

Fakulität Maschinenwesen, Institut für Energietechnik Professur für Thermische Energiemaschinen und -anlagen

Kennfeldabschätzung für Radialturbinen

Dresden, 11.02.2019

Fakulität Maschinenwesen, Institut für Energietechnik Professur für Thermische Energiemaschinen und -anlagen

DIPLOMARBEIT

Thema:	Kennfeldabschätzung für Radialturbinen
Bearbeiter:	LI, Chaobai
Matrikelnummer:	4102706
Bearbeitungszeitraum:	10.09.2018 bis 11.02.2019
Ort, Datum der Abgabe:	Dresden, 11.02.2019
Nummer:	D 423/18
Betreuer:	DrIng. Oliver Velde (CFturbo GmbH Dresden)
	DrIng. Guntram Buchheim
Verantw. Hochschullehrer:	Prof. DrIng. Uwe Gampe

Anhänge:

TECHNISCHE UNIVERSITÄT DRESDEN

Fakultät für Maschinenwesen

	Aufgabenstellung für die Diplomarbeit	D 423/18
im Studiengang	Maschinenbau	
in der Studienrichtung	Energietechnik	
Name, Vorname:	Li, Chaobai	MatrNr. 4102706

Thema: Kennfeldabschätzung für Radialturbinen

Innerhalb des Auslegungsprozesses von Turbomaschinen werden zu erwartende Kennfelder häufig empirisch abgeschätzt. Ein Verfahren, das eine deutliche Verbesserung der Qualität einer Kennfeldvorausbestimmung von Radial- und Axialturbinen verspricht, wurde von Ronald H. Aungier (Turbine Aerodynamics, ASME 2006) veröffentlicht. Diese Vorgehensweise soll speziell für radiale Turbinen so aufgearbeitet und angepasst werden, dass sie zur Ergänzung der bisher verfügbaren Verfahren in CFturbo[®], einem Programm zum Entwurf von Turbomaschinen unterschiedlicher Bauarten, implementiert werden kann.

Dazu ist das Verfahren hinsichtlich Einsatzgrenzen, Parametersensitivität und Robustheit zu analysieren und vorbereitend ein Prototyp programmtechnisch in Excel-VBA oder einer Skriptsprache (Python, JavaScript o.ä.) umzusetzen. Damit ist die Güte des Verfahrens im Vergleich zu CFD-Rechnungen systematisch zu untersuchen, seine Einsetzbarkeit zu bewerten und Einsatzgrenzen aufzuzeigen. Es ist festzustellen, ob das Verfahren die Kennfelder von Radialturbinen genauer als bisher implementierte abbildet.

Die Arbeit wird bei der CFturbo GmbH in Dresden durchgeführt. Der Arbeitsumfang kann abhängig von den erreichten Ergebnissen und in gegenseitiger Abstimmung eingeschränkt oder erweitert werden.

Betreuer: Dr.-Ing. Oliver Velde (CFturbo GmbH Dresden)Prüfer: Prof.Dr.-Ing. Uwe Gampe (TU Dresden), Dr.-Ing. Guntram Buchheim (TU Dresden)

Beginn: 10.09.2018 Abgabe: 11.02.2019

Prof. Dr.-Ing. Michael Beckmann Studienrichtungsleiter Die von der Studienrichtung erlassenen Richtlinien zur Anfertigung der Diplomarbeit sowie die Diplomprüfungsordnung sind zu beachten.

Selbstständigkeitserklärung

Hiermit versichere ich an Eides statt, die vorliegende Arbeit selbstständig, ohne fremde Hilfe und ohne Benutzung anderer als der von mir angegebenen Quellen angefertigt zu haben. Alle aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche gekennzeichnet.

Die Arbeit wurde noch keiner Prüfungsbehörde in gleicher oder ähnlicher Form vorgelegt.

<u>(Unterschrift)</u> Ll, Chaobai

Dresden, den 11.02.2019

Inhaltsverzeichnis

1.	Einleitung	1
	1.1. CFturbo	2
	1.2. Kennfeldabschätzung nach Aungier	2
	1.3. Gliederung vorliegender Arbeit	2
2.	Theoretische Grundlagen	4
	2.1. Geometrie der Radialturbine-Modellen	4
	2.1.1. Kurven	4
	2.1.2. Rotationssymmetrischen Kurven in Zylinderkoordinaten	6
	2.2. Newton-Verfahren	8
3.	Vorgehensweise zur Kennfeldabschätzung	12
	3.1. Verlustberechnung an einem Betriebspunkt	12
	3.1.1. Spiralgehäüse	14
	3.1.2. Leitgitter	18
	3.1.3. Impeller	27
	3.1.4. Diffusor	34
	3.2. Berechnung von Grenzschichten	37
	3.3. Massenstrombilanz durch Iteration	41
	3.4. Erstellung eines Kennfeldes	45
	3.4.1. Konstanter Massenstrom als Randbedingung	46
	3.4.2. Konstanter Austrittsdruck als Randbedingung	47
4.	Programmatische Umsetzung: RTKF	51
	4.1. Python als Programmiersprache	51
	4.1.1. Objekt-orientierte Programmierung	52
	4.1.2. Struktur des Programms	52
	4.1.3. Bedienung von RTKF	55

Inhaltsverzeichnis

	4.2.	CoolProp: Datenbank des Realgasverhaltens	58		
	4.3.	3. Direkteingabe mit YAML-Datei			
	4.4. XML-Schnittstelle zu CFturbo				
	4.5.	Ergebnisbericht in XHTML	63		
5.	Unte	ersuchung der Berechnungsmethode	65		
	5.1. Vergleich mit der Sundstrand-Turbine 6				
		5.1.1. Vergleich am Auslegungspunkt für den Impeller	66		
		5.1.2. Vergleich mit Off-Design CFD-Rechnungen	68		
	5.2.	Vergleich mit der NASA 6,02" Radialturbine	70		
		5.2.1. Erste Kennfeldabschätzung	71		
		5.2.2. Zweite Kennfeldabschätzung mit korrigierter Geometrie	72		
		5.2.3. Ermittlung der Stopf- und Pumpgrenze	73		
6.	Zusa	ammenfassung	77		
Α.	Anh	ang	79		
	A.1.	Meridian- und Querschnitt der NASA 6.02" Radialturbine	80		
	A.2. YAML-Datei für Sundstrand Turbine				
	A.3. YAML-Datei für NASA 6.02" Turbine				
	A.4.	Digitale Dokumenten	85		

Abbildungsverzeichnis

2.1.	Von CFturbo 10.3 entnommen: die mittlere Kurve (gestrichelt) in meri-	
	dionaler Kontur zwischen Bézierkurven von Schaufelspitze und -fuß	5
2.2.	$\theta(r)$ durch Integration anhand $\beta(r)$	7
3.1.	Meridianschnitt einer Radialturbine	13
3.2.	Abmessungen vom Spiralgehäuse	15
3.3.	Abmessungen vom Leitgitter	19
3.4.	Geometrische Beziehung zwischen Halspassage und Schaufelkanalaustrit	t 23
3.5.	Theorie über Inzidenzverlust	24
3.6.	Integral über Geschwindigkeit im Schaufelkanal	39
3.7.	Darstellung vom Aungier-Verfahren zur Massenstrombilanz in H-s-Diagram	m 42
4.1.	Kommandozeilen vor dem Neustart von RTKF	55
4.2.	XML-Ausschnitt von CFturbo-Projektdatei	62
4.3.	Teil eines Screenshots von einer Ergebnisbericht	64
5.1.	Vergleich der berechneten Geschwindigkeitsdreiecken	68
5.2.	$\eta_{T-S}(u)$ im Vergleich mit der CFD-Analysen von Sauret $\ldots \ldots \ldots$	70
5.3.	Verteilung über relative Mach-Zahlen, von Sauret[16]	71
5.4.	Rekonstruktion von der NASA-Turbine in CFturbo	72
5.5.	Kennlinien der NASA 6,02-Zoll Turbinen	75
5.6.	Ermittlung der Stopf- und Pumpgrenze	76
A.1.	Zeichnungen über die NASA 6.02"-Turbine	80

Formelzeichen

A	Querschnitt vom Strömungskanal
a	Schallgeschwindigkeit
b	Höhe vom Strömungskanal
c	absolute Strömungsgeschwindigkeit
c_f	Reibungskoeffizient
F	fraktionelle Länge
h	Enthalpie
'n	Massenstrom
m	meridionale Koordinate
Ma	Mach-Zahl
Ν	Anzahl von Schaufeln
n	Drehzahl
p	Druck
ρ	Dichte
Re	Reynolds-Zahl
r	Radius
s	Entropie, auch Schaufelteilung
Т	Temperatur
u	Umfangsgeschwindigkeit, auch horizontale Geschwindigkeit in Grenzschicht- berechnung

Abbildungsverzeichnis

- w relative Strömungsgeschwindigkeit
- z die z-Achse als Drehachse
- *α* Strömungswinkel
- β Schaufelwinkel
- △ relative Verdrängungsdicke der Grenzschicht
- κ Krümmung einer Kurve
- Π Druckverhältnis
- ν Laufzahl

Sub- und Superskripten

Subskripten

θ	Komponente eines Vektors in Umfangsrichtung
m	Komponente eines Vektors in meridionaler Richtung
E	Eintritt gesamter Anlage
A	Austritt gesamter Anlage
W	Wand (in Grenzschichtanalyse)
S	Schaufel (in Grenzschichtanalyse)
SB	Splitter-Schaufel
1	Eintritt einer Komponente
2	Mittelquerschnitt einer Komponente außer Diffusor. Beim Diffusor: Austritt.
3	Austritt einer Komponente
kr	Kritischer Zustand für Überschallströmung
th	Halspassage
rel	Relative Koordinaten rotierender Komponente
(1), (2), (i)	Der 1./2./i-malige Versuch in Iteration
T-S	Verhältnis von totalem zu statischem Zustand

Superskripten

*	totale Größe,	auch optimale	Inzidenz
---	---------------	---------------	----------

1. Einleitung

Radialturbinen sind Turbomaschinen und können wegen ihrer Arbeitsweise trotz relativ kleinerer Abmessungen auch viel Leistung erzeugen. Die masse-spezifiesche Leistung vom Laufrad einer Turbinen wurde durch die Eulersche Turbinengleichung als Differenz der Produkte aus örtlicher Umfangsgeschwindigkeit u und der Umfangskomponente c_{θ} in Strömung am Ein- und Austritt beschrieben. Eine vernünftig ausgelegte Radialturbine kann dieses Produkt $u \cdot c_{\theta}$ nach ihrer Durchströmung drastisch senken, was die günstige Eigenschaft für ihren Einsätze als Antrieb zahlreicher Kompaktanwendungen bildet.

Bemerkswert sind Untersuchungen an Radialturbinen, die seit Anfang 1960er Jahren in Lewis Research Center von NASA durchgeführt wurden[1]. Ausgangspunkt für diese Arbeiten ist der Einsatz von Radialturbine als Teil des Brayton-Kreisprozesses im Energiesystem für die Raumfahrt. Diese ausführliche Arbeiten umfassen verschiedene Experimenten und theoretische bzw. computerunterstützte Analysen. Aufbauend auf Experimenten mit Radialturbinen verschiedener Abmessungen in dieser Zeit wurde eindimensionale Methode zur Kennfeldabschätzung einschließlich der Modelle für unterschiedlichen Verlustursachen in 1970er Jahren veröffentlicht. Es wurden Computerprogrammen zu diesem Zweck für Auslegungs[2]- bzw. Off-Design-Punkten[3] vorgestellt, in denen Verlustmodellen implementiert sind.

Mit der Veröffentlichung des Buches "Turbine Aerodynamics" hat R. H. Aungier eine ausführliche Methode für die Kennfeldabschätzung einer Radialturbine beschrieben. Diese Methode basiert zum Teil auf den Forschungen an NASA, umfasst jedoch bei Details von Verlustmodellen viele weiteren Forschungsergebnissen nach den NASA-Zeiten.

In der vorliegenden Arbeit wird zuerst versucht, nach Beschreibung von Aungier diese Methode in ein Computerprogramm umzusetzen. Dieses Computerprogramm wird mit bestehenden Daten von Radialturbinen getestet und verglichen, um Kenntnisse

1. Einleitung

über ihrer Einsatzbarkeit, Robustheit und Einschränkungen zu gewinnen.

1.1. CFturbo

CFturbo®ist der Marktname von einer CAE¹-Software aus der CFturbo®-GmbH. Die Software als eine Plattform zur Entwicklung von Turbomaschinen besitzt eine übersichtliche und intuitive Benutzeroberfläche, mit der der Entwicklungsprozess schrittweise durchgeführt und kontrolliert werden kann. Die Ergebnisse von CFturbo lassen sich in verschiedene Format exportieren, so dass sie auch weitere Bearbeitungen durch CAD²-Software oder numerischen Analysen mit CFD³ erlauben.

Für diese Arbeit wird CFturbo zur Wiederherstellung von Radialturbinen aus Literaturen verwendet. Dabei können mit CFturbo wichtige Abmessungen (z. B. die Länge des Strömungsweges L sowie die Stelle für Halspassage im Schaufelgitter) abgeschätzt, die sonst nicht genau zu entnehmen sind.

1.2. Kennfeldabschätzung nach Aungier

Die Kennfeldabschätzung in dieser Arbeit nutzt eine Methode vom R. H. Aungier, die 2006 mit Veröffentlichung von seinem Buch "Turbine Aerodynamics" in Kapitel 9 erschienen ist. Diese ist eine eindimensionale Methode: alle Berechnungen sind auf einer Mittellinie zwischen Spitze und Fuß des Strömungskanals basiert. Auch wird impliziert, dass kein Wärmeaustausch in der Turbine stattfindet: die Methode betrachtet alle Strömungen als adiabat.

1.3. Gliederung vorliegender Arbeit

Die vorliegende Arbeit wird in 6 Kapitel eingeteilt. Nach dem ersten Kapitel als Einleitung wird zuerst in Kapitel 2 einige mathematische Grundlagen für diese Arbeit erläutert. Über Details von der Aungier-Methode zur Kennfeldabschätzung wird es in Kapitel 3 diskutiert. Anschließend wird das Programm RTKF als ein Prototyp dieser Methode

¹engl. "Computer-aided Engineering": rechnergestützte Entwicklung

²engl. "Computer-aided Design": rechnergestützte Konstruktion

³engl. "Computational Fluid Dynamics": numerische Strömungsmechanik

1. Einleitung

in Kapitel 4 beschrieben. Ihre Ergebnisse anhand ausgewählter Modelle und den Abgleich mit anderen Referenzquellen werden in Kapitel 5 dargestellt. Zum Schluss wird die Arbeit noch zusammengefasst.

2.1. Geometrie der Radialturbine-Modellen

Jede aerodynamische Berechnung in dieser Arbeit erfordert eine Menge von geometrischen Größen, die aus dem CFturbo-Modell zu entnehmen und teilweise programmtechnisch zu interpretieren sind. Da diese während der technischen Umsetzung ins Computerprogramm dem Autor vielen Fragen gestellt hat, ist es zweckgemäß, sie in einem Unterkapitel zusammenzufassen, und mathematisch zu erklären.

2.1.1. Kurven

Kurven spielen in CFturbo-Modellen eine wichtige Rolle. Die Schaufeln im Leitgitter und Impeller wurden durch viele Kurven parametrisiert. Leider sind nicht alle Kurve in CFturbo-Projektdatei als diskreten Punkten (x_i, y_i) gespeichert, sondern nur die mathematischen Parameter. Die Behandlung von solchen, d.h. die Berechnung aus mathematischen Kurve-Modell in diskreten Punkten, sowie die Ermittlung einer Mittellinie zwischen 2 vorgegebenen Kurven, werden zunächst beschrieben.

Bézierkurve. Bézierkurve ist ein Typ von Kurven, die sich in der Software von CFturbo Einsatz befindet[4]:

$$\mathbf{P}(t) = \sum_{i=0}^{n-1} \begin{pmatrix} n-1\\ i \end{pmatrix} (1-t)^i t^{n-1-i} \mathbf{P}_i$$

 $\mathbf{P}(x_i, y_i) = \mathbf{P}_0, \ \mathbf{P}_1, \cdots \mathbf{P}_{n-1}$ sind *n* Kontrollpunkten, die die Kurve definieren. Wird z. B. n = 5 Kontrollpunkten vorgegeben, dann wird die Gleichung

$$\mathbf{P}(t) = \mathbf{P}_0(1-t)^4 + 4(1-t)^3 t \mathbf{P}_1 + 6(1-t)^2 t^2 \mathbf{P}_2 + 4(1-t)t^3 \mathbf{P}_3 + t^4 \mathbf{P}_4$$

 $t \in [0,1]$ ist ein Parameter zur Berechnung aller Punkten auf dieser Kurve. Es is leicht zu erkennen, dass $\mathbf{P}(t=0) = \mathbf{P}_0$ und $\mathbf{P}(t=1) = \mathbf{P}_{n-1}$, d.h. die Kurve beginnt an dem ersten Kontrollpunkt und endet an dem Letzten. Die andere Punkten werden generell nicht durch die Kurve betreten.

Polygonzug. Ist eine Bézierkurve durch Auswahl einer endlichen Anzahl von *t* diskretisiert, oder eine Größe in CFturbo bereits durch ausreichende diskreten Punkten angegeben, so kann einen Polygonzug ("polyline") gebildet werden. Ein Polygonzug verbindet Punkten $P_i(x_i, y_i)$ in Reihenfolge, dass zwischen allen benachbarten Punkten eine Strecke gibt. Für einen unbekannten Punkt $P_x(x, y)$ auf dem Polygonzug mit $x_i < x < x_{i+1}$, seine Koordinaten können durch einfache Interpolation

$$y = y_i + \frac{x - x_i}{x_{i+1} - x_i} (y_{i+1} - y_i)$$

gefunden werden. Diese Methode ermöglicht es, aus vorhandenen und limitierten Daten die komplette Geometrie näherungsweise zu beschreiben.

Mittellinie zwischen 2 Polygonzügen. Oft ist es erforderlich, eine Mittellinie zwischen 2 Polygonzüge zu berechnen. Ein Beispiel ist die mittlere Kurve in meridionaler Kontur, siehe Abb. 2.1.

Abbildung 2.1.: Von CFturbo 10.3 entnommen: die mittlere Kurve (gestrichelt) in meridionaler Kontur zwischen Bézierkurven von Schaufelspitze und -fuß.

Die Bézierkurven an beiden Seiten haben jeweils eine eigene Reihe von Punkten

in X-Y-Koordinatensystem. Sowohl die Koordinaten auf x-Achse als auch auf y-Achse überlagern sich nicht. Zur Suche einer Mittellinie ist es notwendig, eine weitere Variable t einzusetzen, um die Zugehörigkeit zweier Endpunkten miteinander herzustellen:

Bézierkurven L_1 , L_2 sind Funktionen von x, d.h.

$$y_{1,i} = \mathbf{L}_1(x_{1,i})$$
$$y_{2,i} = \mathbf{L}_2(x_{2,i})$$

wobei $x_{1,i}$ im Bereich $[x_{1,0}, x_{1,n-1}]$ und $x_{2,i}$ im Bereich $[x_{2,0}, x_{2,n-1}]$ liegt. Wählt man ein $t \in [0, 1]$, und lässt t eine X-Koordinate aus jeweiligen Bereich auswählen,

$$x_{1,t} = x_{1,0} + (x_{1,n-1} - x_{1,0})t$$

$$x_{2,t} = x_{2,0} + (x_{2,n-1} - x_{2,0})t$$

so bildet man eine Strecke vom Kurvenpunkt $[x_{1,t}, \mathbf{L}_1(x_{1,t})]$ nach $[x_{2,t}, \mathbf{L}_2(x_{2,t})]$, deren Mittelpunkt

$$[\frac{x_{1,t} + x_{2,t}}{2}, \frac{\mathbf{L}_1(x_{1,t}) + \mathbf{L}_2(x_{2,t})}{2}]$$

der Mittellinie schneidet. Wiederholt man dieser Vorgang, so können ausreichende Mittelpunkte gefunden werden, die die Mittellinie im Form eines neuen Polygonzuges beschreiben.

2.1.2. Rotationssymmetrischen Kurven in Zylinderkoordinaten

Zur Behandlung von Schaufel im Stator und Impeller, werden in CFturbo Daten von Zylinderkoordinaten verwendet. Eine Kurve L_1 liefert Koordinaten in (r, θ, z) , dabei ist r der Abstand von einem Kurvenpunkt zu z-Achse, θ der Winkel um diese Achse, gemessen von dem Startpunkt $r = r_0$. Die 3-dimensionale Kurve kann durch ein allgemeine $t_1 \in [0, 1]$ parametrisiert werden:

$$\begin{pmatrix} r_1(t_1) \\ \theta_1(t_1) \\ z_1(t_1) \end{pmatrix} = \mathbf{L}_1(t_1)$$

 $\theta(t)$ ist meistens nicht vorhanden. Dieser Winkel kann aus einer Integration entlang

der Kurve resultieren, wenn die Letzte sich durch eine Funktion über Schaufelwinkeln $\beta(r)$ bestimmen lässt, siehe Abb. 2.2.

Abbildung 2.2.: $\theta(r)$ durch Integration anhand $\beta(r)$

Die Beziehung von $\Delta \theta$ – der Zuwachs von θ , und die Änderung von Radius ΔR lautet:

$$\sin\beta = \frac{-\Delta R}{r\Delta\theta}$$

somit wird

$$\theta(r) = -\int_{r_0}^r \frac{1}{r\sin\beta(r)} \mathrm{d}r$$

Abstand von 2 rotationssymmetrischen Kurven. Eine wichtige Frage bei der Berechnung ist, der Abstand zwischen 2 Kurve zu finden. Dies ist der Fall, wenn z. B. die Breite am Halspassage von einem beschaufelten Stator oder einem Impeller benötigt wird.

Da die Schaufeln meistens um einer Achse rotationssymmetrisch aufgebaut sind, ergibt sich die Mittelkurve der benachbarten Schaufel aus einer Drehung von L_1 um Winkel $2\pi/N$, dabei ist *N* Anzahl der Schaufel:

$$\mathbf{L}_{2}(t_{2}) = \mathbf{L}_{1}(t_{2}) + \begin{pmatrix} 0 \\ \frac{2\pi}{N} \\ 0 \end{pmatrix} \qquad t_{2} \in [0, 1]$$

Der Abstand zwischen 2 Kurven wird mit folgender Methode näherungsweise gesucht. Mit einem vorgegebenen Genauigkeitsfaktor *N* läuft das Programm mit 2 Schlei-

fen, wobei t_1 und t_2 voneinander unabhängig mit Werten aus einer Reihe $[0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1]$ gegeben werden.

Ein Tangentvektor $V_1 = \delta L_{1,i}$ von Kurve L_1 kann durch derartigen und den letzten Wert von t_1 gebildet werden. Für spätere Berechnung muss dieser allerdings in kartesischen Koordinaten umgeschrieben werden:

$$\delta \mathbf{L}_{1,i} = \mathbf{L}_1(t_i) - \mathbf{L}_1(t_{i-1}) = \begin{pmatrix} x_1(t_1) \\ y_1(t_1) \\ z_1(t_1) \end{pmatrix} = \begin{pmatrix} r_1(t_i)\cos\theta_1(t_i) - r_1(t_{i-1})\cos\theta_1(t_{i-1}) \\ r_1(t_i)\sin\theta_1(t_i) - r_1(t_{i-1})\sin\theta_1(t_{i-1}) \\ z_1(t_i) - z_1(t_{i-1}) \end{pmatrix}$$

Einen zweiten Vektor V_2 bildet man in analoger Weise vom Punkt $L_2(t_2)$ nach $L_1(t_1)$:

$$\mathbf{V}_2 = \mathbf{L}_2(t_2) - \mathbf{L}_1(t_1)$$

und wird ebenfalls in kartesischen Koordinaten repräsentiert.

Die Suche nach dem Abstand fordert, der Vektor V_1 zu V_2 quer zu stehen, d.h. das Skalarprodukt

$$\mathbf{V}_1 \cdot \mathbf{V}_2 = 0$$

Da das Programm mit diskreten Kurvenpunkten arbeitet, kann diese Bedingung ohne Weiteres nicht strikt erfüllt werden. Anstattdessen werden t_1 , t_2 und zugehörige Lange $|V_2|$ registriert, wo die Parameter dazu führen können, das Zeichen dieses Produktes von der letzten Suche abweicht(von + nach - oder umgekehrt). Für jeden t_1 kann somit maximal ein t_2 aufgenommen werden. Der Abstand zwei Kurven befindet sich nun näherungsweise an der Stelle (t_1 , t_2) mit minimalen $|V_2|$.

2.2. Newton-Verfahren

Der Newton-Verfahren ist eine mathematische Methode, die das Zweck hat, nach Bestimmung von einer Reihe $x_{(0)}, x_{(1)}, ..., x_{(n-1)}, x_{(n)}$, eine Funktion f(x) näherungsweise zu 0 zu bringen, d.h. mit einer positiven aber sehr kleinen Fehlertoleranz ε soll die Gleichung

$$|f(x_{(n)})| < \varepsilon \tag{2.2.1}$$

bestehen. Typischerweise wird $\varepsilon = 10^{-5}$ bis $\varepsilon = 10^{-7}$ eingesetzt, daher kann $x_{(n)}$ in guter Näherung als Lösung für

$$f(x) = 0$$

angesehen werden.

Die Bestimmung beginnt mit einer Abschätzung an $x = x_{(0)}$. Mit dieser hat die Funktion einen Wert

$$y_{(0)} = f(x_{(0)})$$

der generell nicht gleich 0 ist.

Zunächst wird ein kleiner Schritt an $x_{(0)}$ zugegeben: $x = x_{(0)} + \Delta x$, sodass die Steigung an dieser Stelle abgeschätzt wird:

$$k_{(0)} = \frac{\delta y}{\delta x}|_{x=x_{(0)}} = \frac{f(x_{(0)} + \Delta x) - f(x_{(0)})}{\Delta x}$$

Der nächste x, der mit dieser Steigung die Funktion zu Null bringen sollte, ergibt sich dann

$$x_{(1)} - x_{(0)} = \frac{-y_{(0)}}{k_{(0)}}$$
$$x_{(1)} = x_{(0)} - \frac{y_{(0)}}{k_{(0)}}$$

Da f(x) meistens nicht linear ist, kann allerdings

$$y_{(1)} = f(x_{(1)}) \neq 0$$

sein. An diesem Punkt $(x_{(1)}, y_{(1)})$ wird der Verfahren neue durchgeführt, sodass nach einigen Runden die GI. (2.2.1) erfüllt ist ("Konvergenz"). Dieser soll nach Erfahrung innerhalb 10-20 Iterationen auftreten. Andernfalls kann zweckgemäß eine maximale Grenze an dieser Methode gesetzt werden, um nicht konvergente Fälle rechtzeitig zu unterbrechen.

Anwendung vom Newton-Verfahren Während der Analyse von Radialturbinen ist dieser Verfahren für verschiedenen Fragen gebräuchlich. Dabei wird als f(x) häufig eine Fehlerfunktion gebildet, wobei mit f(x) = 0 die Erfüllung einiger Bedingungen bedeuten.

Suche nach Lösung von Gleichungen ohne analytischen Ausdrücke am Beispiel von Gl. (3.2.5) in Form von

$$x = a - \log x$$

kann f(x) als

$$f(x) = x - a + \log x$$

gebildet werden. Hier ist ein geeigneter Anfangswert $x_{(0)}$ auszuwählen, damit dieser nicht schon in der 1. Iterationsrunde zu mathematischem Fehler führt.

Massenstrombilanz mit einfacher Bedingungen z. B. in isentroper Unterschallströmung mit bekannter Querschnittänderung, wobei die Geschwindigkeit so zu bestimmen ist, dass die statische Dichte und Geschwindigkeit zusammen den erforderlichen Massenstrom bilden, und zugleich auf die Energieerhaltung achten. Bezeichnet man den bekannten Querschnitt mit Subskript 1 und den Unbekannten mit 2, so kann die Fehlerfunktion (für dieses Beispiel vereinfacht) mit

$$f(c_2) = \dot{m}_1 - \rho_2 A_2 c_2$$

gebildet werden, wobei

$$\rho_2 = \text{CoolProp}(h_2, s_1)$$

 $h_2(c_2) = h_1^* - \frac{1}{2}c_2^2$

von externer Datenbank abhängig sind und sich nicht einfach mathematisch ausdrucken lassen.

Fiktive isentrope Expansion aus einem Totalzustand (h^*, s^*) kann den kritischen Zustand (wenn Geschwindigkeit der Schallgeschwindigkeit gleicht: c = a) abgeleitet werden. Hierzu schreibt man die Fehlerfunktion aus Differenz von c und a

$$f(c) = c - a$$

wobei die Schallgeschwindigkeit

$$a = \text{CoolProp}(h, s)$$

mit

$$h = h^* - \frac{1}{2}c^2$$
$$s = s^*$$

ebenfalls als Realstoffdaten von Externe gesucht wird.

Die Abschätzung eines Kennfeldes von Radialturbinen kann nach Aungier in 2 Aufgaben eingeteilt werden: die chronologische Verlustberechnung an einem vorgegebenen Betriebspunkt, und die Erstellung von einem Kennfeld durch Berechnung an verschiedenen Punkten.

3.1. Verlustberechnung an einem Betriebspunkt

Die Verlustberechnung an einem Betriebspunkt ist der Kern dieser Arbeit. Mit dieser Berechnung soll anhand eines geometrischen Modells von CFturbo und wenigen thermodynamischen Eintrittsgröße alle Komponenten chronologisch analysiert werden.

Generell besteht eine Radialturbine aus 4 Komponenten: Spiralgehäuse, Leitgitter, Impeller und Diffuser, siehe Abb. 3.1. Das Leitgitter und der Impeller sind jeweils beschaufelt.

Der Grundidee für die Verlustberechnung vom jeweiligen Einzelkomponenten sind ähnlich. Die aerodynamische Verluste treten als Verluste der Totaldrücke des Arbeitsfluids auf, wenn diese eine Komponente durchströmt. Für jede Komponente wird ein Verlustfaktor Y ermittelt. Dieser Faktor zeigt die Differenz von p_1^* am Eintritt zu p_3^* am Austritt und bezieht diese auf den dynamischen Druck am Austritt $p_3^* - p_3$:

$$Y = \frac{p_1^* - p_3^*}{p_3^* - p_3} \tag{3.1.1}$$

Für jede Komponente wird ein Y berechnet. Diese Berechnung umfasst verschiedene Ursachen an Verlusten und werden in den folgenden Abschnitten einzeln erläutert. Für die jeweilige Ursache wird ein Teil von Y berechnet, und Y ist die Summe von allen

Abbildung 3.1.: Meridianschnitt einer Radialturbine

Teilfaktoren:

$$Y = \sum_{i} Y_{i}$$
 $i = \text{jeweilige Ursache}$

Es wird gesehen, dass *Y* generell vom Zustand sowohl am Eintritt als auch am Austritt abhängen. Da am Anfang der Berechnung nur Zustände stromaufwärts bekannt sind, muss eine Austrittsgeschwindigkeit, in stationären Komponenten c oder c_m , oder in rotierenden Komponenten w oder w_m , angenommen werden. Mit dieser Annahme können p_3 und *Y* vorläufig nach Isentrope-Zustandsänderung beim p_1^* und s_1 berechnet werden. Dadurch ist auch den Totaldruck am Austritt p_3^* aus Gl. (3.1.1)

$$p_3^* = \frac{p_1^* + Y p_3}{1 + Y} \tag{3.1.2}$$

bekannt.

Die o.g. Gleichung gibt $p_3^* = p_1^*$, wenn Y = 0 ist. Dieser verlustfreie Fall wird allerdings nicht auftreten. Wegen Y > 0 und $p_3 < p_1^*$ wird immer

 $p_3^* < p_1^*$

sein. Die neue p_3^* wird, wie später im Abschnitt 3.3 beschrieben wird, einen neuen

Zustand für den Austritt festlegen. Dieser muss allerdings nicht mit der Erhaltung des Massenstroms übereinstimmen. Ein iteratives Verfahren wird für jede Komponente angewandt, um die richtige Lösung herauszufinden.

Während der Berechnung im Leitgitter und Impeller kann es auftreten, dass die Strömungsgeschwindigkeit in der Halspassage in Überschallbereich übergeht. In einem solchen Falle kommen zusätzliche Probleme in Frage: einerseits ist der Massenstrom verstopft, d.h. der Massenstrom ist nur zu einem Grenzwert realisierbar, und andererseits muss der Gegendruck nach der verstopften Komponente ermittelt werden, wobei dieser gleichzeitig an einiger Randbedingungen für die gesamte Anlage halten muss. Die Bestimmung von diesem Gegendruck ist zwar kein Gegenstand für die Berechnung an einem Betriebspunkt mehr, muss jedoch bereits vorher entsprechend überlegt werden.

3.1.1. Spiralgehäüse

Als erste Komponente in der Analyse kommt das Spiralgehäuse in Frage. Das Spiralgehäuse ist eine nicht bewegliche Komponente und besitzt keine Schaufeln. Die Strömung am Eintritt mit totalen Zustandsgrößen p_E^* , T_E^* und dem Massenstrom \dot{m}_E wird im Spiralgehäuse beschleunigt und in Leitgitter zugeführt.

Zu dieser Analyse wird zuerst angenommen, dass sich das Gehäuse in einem ganzen Umfang von 360° rund um das Leitgitter erstreckt. Der Massenstrom verteilt sich am Austritt gleichmäßig, d.h., die meridionale Geschwindigkeit am Austritt ist vom Umfangswinkel θ unabhängig:

$$\frac{\mathrm{d}c_{3m}}{\mathrm{d}\theta} = 0$$

Es werden 3 Stellen vom Spiralgehäuse ausgewählt: der Eintritt mit Subskript 1, der Austritt mit Subskript 3, und einen mittleren Querschnitt mit Subskript 2, wo eine Hälfte des Massenstroms ausgetreten ist. Nach der Annahme vom letzten Absatz wird man leicht erkennen, dass die Stelle 2 sich am Umfang 180° gegenüber der Stelle 1 befinden muss, siehe Abb. 3.2.

Die Radien von Stellen 1-3: r_1 , r_2 und r_3 sind vor der Berechnung bekannt. Für Stelle 1 und 2 werden die Querschnitte A_1 und A_2 direkt angegeben. Für Stelle 3 wird die Breite vom Strömungskanal b_3 benötigt, dadurch ergibt sich $A_3 = 2\pi r_3 b_3$.

Abbildung 3.2.: Abmessungen vom Spiralgehäuse

Festlegung der dynamischen Zustandsgrößen am Eintritt. Der Eintrittszustand einer Radialturbine wird vor allen Berechnungen in totalen Zustandsgrößen vorgegeben. Aus der totalen Temperatur T_E^* und dem Druck p_E^* soll die Geschwindigkeit an der Stelle 1 gefunden werden.

Die Geschwindigkeit c_1 verbindet die statische Enthalpie h_1 mit der totalen Enthalpie h_1^* durch

$$h_1 = h_1^* - \frac{1}{2}c_1^2 \tag{3.1.3}$$

Sollte die Entropie an dieser Stelle bekannt sein, dann ist der statische Zustand festgelegt. Da es sich hier nur um die Umrechnung zwischen totalem und statischem Zustand handelt, ist die statische Entropie gleich der totalen Entropie:

$$s_1 = s_1^*$$
 (3.1.4)

Die Letzte lässt sich im Computerprogramm durch eine Bibliothek namens CoolProp bestimmen (siehe Abschnitt 4.2). Es wird im folgenden Text als

$$s_1^* = \text{CoolProp}(p_1^* = p_E^*, T_1^* = T_E^*)$$
 (3.1.5)

ausgedruckt.

Der statische Zustand beinhaltet die Dichte ρ_1 an der Stelle 1, der den Massenstrom \dot{m}_1 bestimmt:

$$\dot{m}_1 = \rho_1 A_1 c_1 \tag{3.1.6}$$

Man sieht von Gl. (3.1.3) bis (3.1.6), wie die Auswahl von c_1 einen Einfluss auf dem Massenstrom und dem statischen thermodynamischen Zustand an dieser Stelle hat. Da der Massenstrom m_E vorgegeben ist, hat man die Bedingung

$$\dot{m}_1 = \dot{m}_E$$

zu erfüllen. Dies erfolgt durch einige Iterationen, in dem man die Geschwindigkeit c_1 zum Anfang mit der totalen Dichte $\rho_{1(1)} = \rho_1^* = \text{CoolProp}(p_E^*, T_E^*)$ abschätzen:

$$c_{1(1)} = \frac{\dot{m}_E}{\rho_{1(1)}A_1}$$

und mit diesem Wert den statischen Zustand nach (3.1.3) und (3.1.5) neu bestimmt. Die Dichte ρ_1 weicht nach dieser Iterationsrunde von $\rho_{1(1)}$ ab und wird korrigiert. Dieser Vorgang wird nach der Korrektur wiederholt, bis eine Konvergenz für c_1 festgestellt wird:

$$\left|\frac{c_{1(i)}}{c_{1(i+1)}} - 1\right| < \varepsilon$$

 ε bezeichnet eine relative Fehlertoleranz für jegliche Iteration in dieser Arbeit. Häufig wird $\varepsilon = 10^{-6}$ oder $\varepsilon = 10^{-5}$ ausgewählt. Mit kleineren Werten wie 10^{-7} können zwar der Algorithmus noch funktionieren, allerdings wird das Programm längere Zeit benötigen.

Festlegung der Geschwindigkeit an der Stelle 2. Die Stelle 2 ist per Definition die Stelle, wo sich eine Hälfte vom Massenstrom bereits ins Leitgitter eingetreten ist. Mit der Geschwindigkeit an dieser Stelle wird die Drallströmung am Austritt abgeschätzt, durch

$$c_{3\theta} = \frac{c_2 r_2}{r_3}$$

Hierzu kann c_2 analog zu der Massenstrombilanz an der Stelle 1 gefunden werden. Der Querschnitt wird A_2 und der Massenstrom $0.5\dot{m}_E$. Die Strömung von Stelle 1 nach 2 wird als isentrop angenommen.

Berechnung der Verlustfaktoren. 2 Ursachen für Verluste werden im Spiralgehäuse betrachtet: Y_{θ} der Verlust wegen ungleichmäßigen Drehimpuls in der Strömung, und Y_p der Verlust wegen Bildung der Grenzschicht. Die Berechnung der Grenzschicht wird nach dem Verfahren in Abschnitt 3.2 durchgeführt, dabei wird neben der Y_p auch ein Faktor Δ zur Beschreibung der Blockierung im Strömungskanal ergeben. Mit diesem Faktor soll den Querschnitt A_3 während der Massenstrombilanz reduziert werden:

$$A_3 \to (1 - \Delta)A_3$$

Der Verlust an Drehimpuls wird vom Unterschied zwischen Drallgeschwindigkeit am Austritt $c_{3\theta}$ und ihrem Sollwert am Eintritt

$$c_{3\theta,ideal} = \frac{r_1 c_1}{r_3}$$

bestimmt. Der Verlustfaktor beschreibt den Verlust an Totaldruck einer Komponente und bezieht sich auf den dynamischen Druck am Komponentenaustritt. Die dynamischen Drücke sind näherungsweise (für inkompressibles Fluid) proportional zu der kinetischen Energie in der Strömung, daher wird

$$Y_{\theta} = \frac{(c_{3\theta,ideal} - c_{3\theta})^2}{c_3^2} = (\frac{\frac{r_1c_1}{r_3} - c_{3\theta}}{c_3})^2$$

Der gesamte Verlustfaktor *Y* ist die Summe jeweiliger Ursachen:

$$Y = Y_{\theta} + Y_p$$

Bestimmung vom Austrittszustand. Der Austrittszustand ist durch die Bilanzierung vom Massenstrom am Austritt \dot{m}_3 mit Eintrittsmassenstrom \dot{m}_1 zu ermitteln. Dabei wird c_{3m} als Variable ausgewählt. Da die Drallgeschwindigkeit $c_{3\theta}$ bereits bekannt ist, ist die absolute Austrittsgeschwindigkeit wegen

$$c_3 = \sqrt{c_{3m}^2 + c_{3\theta}^2}$$

nur von c_{3m} abhängig.

 c_{3m} kann aus dem Sollwert vom Massenstrom ermittelt werden, vorerst mit der totalen Dichte am Eintritt:

$$c_{3m(1)} = \frac{m_1}{\rho_1^* A_3}$$

In einer stationären Komponente, gleicht die totale Enthalpie am Austritt dem Wert am Eintritt: $h_3^* = h_1^*$. Die statische Enthalpie h_3 wird dabei

$$h_3 = h_1^* - \frac{1}{2}(c_{3\theta}^2 + c_{3m}^2)$$

Die Entropie s_3 wird zum Anfang mit s_1 eingesetzt. Der Verfahren von Abschnitt 3.3 bietet eine Methode, durch schrittweise Erhöhung an c_{3m} die Entropie s_3 so zu bestimmen, dass $s_3 > s_1$ den Zustand 3 rechts vom Zustand 1 im H-s-Diagramm gesucht wird, siehe Abb. 3.7 auf Seite 42. Am Ende entspricht c_{3m} zusammen mit der zugehörigen Dichte ρ_3 den Sollwert vom Massenstrom:

$$\dot{m} = \rho_3 A_3 c_{3m} (1 - \Delta)$$

Keine Berechnung in Überschallströmung. Der Massenstrom für das Spiralgehäuse ist durch äußere Eingabe gegeben. Es gibt praktisch keine Einschränkung über die Auswahl von diesem Wert. Aus aerodynamischen Kenntnissen ist jedoch der maximale Massenstrom in einem Strömungskanal durch die Geometrie und thermodynamische Zustände am Ein- und Austritt begrenzt, wenn die Strömung Schallgeschwindigkeit erreichen würde. Dieser ist physikalisch möglich, allerdings für den Entwurf einer Turbine nicht erwünscht. Es ist daher sinnvoll, dass man während der Massenstrombilanz an der Stelle 1 den Fall

 $c_1 > a_1$

überprüft. Besteht eine Überschallströmung, wird diese über eine Fehlermeldung dem Nutzer gezeigt, anstatt die Berechnung weiter zu führen.

3.1.2. Leitgitter

Die Leitgitter in dieser Analyse wird als radial angenommen. Die Leitgitter ist, wie das Spiralgehäuse, eine unbewegliche Komponente, allerdings wegen der Existenz von Schaufeln müssen die Geschwindigkeiten aufwendiger analysiert werden.

- 2 Verluste im Leitgitter werden betrachtet:
- 1. Verlust wegen Grenzschicht Y_p
- 2. Verlust von nicht optimalen Anströmungswinkel (Inzidenzverlust) Yinc

Für die jeweilige Ursache wird ein Faktor ermittelt und die Ergebnisse nach 3.3 iterativ optimiert.

Ermittlung geometrischer Abmessungen Bevor alle Berechnungen durchgeführt werden können, müssen einige geometrische Abmessungen gesucht werden. Es wird für die Berechnung 3 Stellen im Leitgitter erkannt: den Ein- und Austritt mit Subskripten 1 und 3, und eine Halspassage mit Subskript "th" (engl. "throat"), siehe Abb 3.3.

Abbildung 3.3.: Abmessungen vom Leitgitter

Für Stelle 1 und 3 müssen die Radien r_1 , r_3 und Höhen der Strömungskanälen b_1 , b_3 eingegeben werden. Als Anschlussstellen zu anderen Komponenten können diese Abmessungen direkt aus der CFturbo-Projektdatei oder -Geometriedatei gelesen werden.

Die Schaufelwinkeln β_1 und β_3 sind jeweils Winkel zwischen den Tangenten in Umfangsrichtung und der Schaufelmittellinie. Die CFturbo-Geometriedatei bietet bereits diskretisierte Kurve $\mathbf{P}_{M,1} = (x, y, z, r, \beta)_i$ über der Mittellinie von Schaufeln im Leitgitter in sowohl kartesischem als auch zylindrischen Koordinatensystem und können einfach genutzt werden, indem beide Winkeln als den ersten bzw. letzten Punkt in der Kurve herauszufinden sind.

Die Länge vom Strömungsweg *L* ist für die Ermittlung von Grenzschichtdicken und dem optimalen Inzidenzwinkel notwendig. *L* ergibt sich aus Summe der Abstände aller 2 benachbarten Punkten

$$L = \sum_{i=0}^{n-2} \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 + (z_{i+1} - z_i)^2}$$

Ähnlich ermittelt man die gesamte meridionale Länge m_3 aus Daten in Zylinderkoordinaten durch numerische Integration:

$$m_3 = \sum_{i=0}^{n-2} \sqrt{(r_{i+1} - r_i)^2 + (z_{i+1} - z_i)^2}$$

Eine Besonderheit von der Methode nach Aungier ist, dass neben allgemeinen geometrischen Abmessungen, auch die Halspassage im Strömungskanal einer beschaufelten Komponente berücksichtigt wird. Diese Berücksichtigung ermöglicht man, auch den Betrieb im Überschallbereich berechnen zu können.

Die Halspassage ist der engsten Strömungsquerschnitt in einem Kanal. In einem radialen Leitgitter wird sie an der abströmenden Schaufelkante mit einer benachbarten Schaufel zusammengebildet.

Alternativ kann mit dem Verfahren in Abschnitt 2.1.2 zuerst die Breite *o* der Halspassage ermittelt werden, indem man eine zweite Mittellinie $P_{M,2}$ aus $P_{M,1}$ aufbaut. Für jeden Punkt in $P_{M,1}$ mit Koordinaten $(x_{i,1}, y_{i,1}, z_{i,1})$, kommt ein entsprechender Punkt in $P_{M,2}$ mit

$$\begin{bmatrix} x_{i,2} \\ y_{i,2} \\ z_{i,2} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_{i,1} \\ y_{i,1} \\ z_{i,1} \end{bmatrix}$$
$$\theta = \frac{2\pi}{N}$$

wobei N die Schaufelanzahl im Leitgitter ist.

Die Matrixmultiplikation dreht ein Punkt am $(x_{i,1}, y_{i,1}, z_{i,1})$ um die z-Achse mit einem Winkel von θ . Die neue Mittellinie entspricht einer benachbarten Schaufel. Wird der minimale Abstand zwischen $\mathbf{P}_{M,1}$ und $\mathbf{P}_{M,2}$ an den Indizies $i_{o,1}$ und $i_{o,2}$ gefunden, so

ist die Breite vom Halspassage diesen Abstand

$$o = |\mathbf{P}_{M,1}(i_{o,1}) - \mathbf{P}_{M,2}(i_{o,2})|$$

Der Mittelwert vom Radius der Punkten $P_{M,1}(i_{o,1})$ und $P_{M,2}(i_{o,2})$ gibt den mittleren Radius der Halspassage

$$r_{th} = \frac{1}{2}(r_{i_{o,1}} + r_{i_{o,2}})$$

Die Höhe im Strömungskanal ist in radialen Leitgitter konstant, d.h.

$$b_1 = b_2 = b_3 = b_{th}$$

Ist dies nicht der Fall, findet z. B. ein diagonales Leitgitter im Einsatz, können b_{th} anhand 2 weiterer Kurven an der Schaufelspitze und dem -fuß gefunden werden. Auf einer meridionalen Ebene haben Kurvenpunkten mit Index k die Koordinaten (z, r), die als Funktionen von ihrer meridionalen Längen beginnend vom Anfangspunkt ausgedruckt werden können:

$$(z,r)_{k} = f(m_{k}) \qquad 0 \leq k \leq n$$
$$m_{k} = \sum_{i=0}^{k} \sqrt{(r_{i+1} - r_{i})^{2} + (z_{i+1} - z_{i})^{2}}$$

Die Ebene der Halspassage schneidet die meridionale Spitze- und Fußkurve jeweils an einer Stelle: $k_{S,th}$ und $k_{F,th}$. Es wird angenommen, dass die anteilige Länge an der Halspassage auf aller 3 Kurven gleich ist:

$$\frac{m_{k_{S,th}}}{m_{3,S}} = \frac{m_{th}}{m_3} = \frac{m_{k_{F,th}}}{m_{3,F}}$$

Somit ist die Höhe der Halspassage *b*_{th} der Abstand vom Punkt an Schaufelspitze

$$(r,z)_{k_{S,th}}$$

zu dem Punkt am Schaufelfuß

$$(r,z)_{k_{F,th}}$$

mit

$$b_{th} = \sqrt{(r_{k_{S,th}} - r_{k_{F,th}})^2 + (z_{k_{S,th}} - z_{k_{F,th}})^2}$$

Dieser Verfahren ist generell und auch für den Impeller gültig.

Bestimmung des Abströmwinkels α_3 Ein wichtiger Schritt für die Analyse mit beschauftelten Komponenten ist die Bestimmung vom Abströmwinkel α_3 . Dieser Winkel wird bei nachfolgender Massenstrombilanz unverändert verwendet, wodurch er die Richtung an die absolute Geschwindigkeit c_3 gibt, und somit die Bestimmung der Komponenten in meridionale und tangentiale Richtung ermöglicht.

In einem Leitgitter wird die Strömung nach Halspassage nicht mehr gelenkt. Nachher gilt die Drehimpulserhaltung in der freien Strömung:

$$r_{th}c_{\theta,th} = r_3c_{3\theta}$$

Wird die Änderung der meridionalen Geschwindigkeit zwischen Halspassage und Leitgitteraustritt vernachlässigt: $c_{m,th} = c_{3m}$, so stellt man die Beziehung der Strömungswinkel an beiden Stellen her:

$$\frac{c_{m,th}}{r_{th}c_{\theta,th}} = \frac{c_{3m}}{r_{3}c_{3\theta}}$$
$$\frac{\tan \alpha_{th}}{r_{th}} = \frac{\tan \alpha_{3}}{r_{3}}$$
$$= \tan^{-1}(\frac{r_{3}}{r_{th}}\tan \alpha_{th}) \in (0^{\circ}, 90^{\circ})$$
(3.1.7)

Zudem muss der Strömungswinkel α_{th} noch der Massenstromerhaltung — oder mit Annahme konstanter Dichte — der Volumenstromerhaltung zwischen Halspassage und Austritt entsprechen, siehe Abb 3.4.

$$A_{th}c_{th} = \frac{A_3}{N}c_{3m}$$

Wegen $A_{th} = b_{th}o$, $A_3 = 2\pi r_3 b_3 = s_3 b_3 N$:

 α_3

$$b_{th}oc_{th} = s_3b_3c_{3m}$$

$$\alpha_{th} = \sin^{-1} \frac{c_{3,th}}{c_{th}} \approx \sin^{-1} \frac{c_{3m}}{c_{th}} = \sin^{-1} \frac{b_{th}o}{s_3b_3} \in (0^\circ, 90^\circ)$$
(3.1.8)

Mit Gleichungen (3.1.7) und (3.1.8) können α_3 nun aus geometrischen Abmessun-

Abbildung 3.4.: Geometrische Beziehung zwischen Halspassage und Schaufelkanalaustritt

gen r_3 , b_3 , o, r_{th} , b_{th} ermittelt werden.

Berechnung von Verlustfaktoren Der Verlustfaktor für die Grenzschicht Y_p wird nach dem Verfahren im Abschnitt 3.2 berechnet. Die Berechnung der Grenzschicht ergibt auch einen Faktor Δ , der die Blockierung des Strömungskanals am Austritt beschreibt. Mit diesem Faktor soll in weiteren Berechnungen der Querschnitt reduziert werden, z. B.

$$A_3 \to A_3(1-\Delta)$$

Über den Inzidenzverlust im Leitgitter wird angenommen[3], dass der Verlust an Totaldruck etwa durch den Verlust von kinetischer Energie $\frac{1}{2}c^2$ an einer optimaler Anströmungsrichtung zu beschreiben ist:

$$\Delta(\frac{1}{2}c^2) = \frac{c^2 \sin^2(\alpha - \alpha^*)}{2}$$
$$\sin^2(\alpha - \alpha^*) = \frac{\Delta(\frac{1}{2}c^2)}{\frac{1}{2}c^2}$$
(3.1.9)

Diese Annahme basiert sich auf der Theorie, dass eine Abweichung an der tatsächlichen Inzidenzwinkel α zu ihrem optimalen Wert α^* zum totalen Verlust an der Geschwindigkeitskomponente führt, der quer zu α^* steht, siehe Abb 3.5.

Abbildung 3.5.: Theorie über Inzidenzverlust

Wird die Kompressibilität vernachlässigt, dann kann wegen Bernoulli-Gleichung

$$\Delta p + \rho \Delta (\frac{1}{2}c^2) = 0$$

der dynamische Druck $p^* - p$ näherungsweise als proportional zu $\frac{1}{2}c^2$ angesehen werden. Mit Gl. 3.1.9 wird der Verlust an Totaldruck

$$\frac{\Delta p_1^*}{p_1^* - p_1} = \frac{\Delta(\frac{1}{2}c^2)}{\frac{1}{2}c^2} = \sin^2(\alpha_1 - \alpha_1^*)$$

So ist der Faktor vom Inzidenzverlust, im Bezug auf den dynamischen Druck am Austritt, nach folgender Gleichung zu definieren.

$$Y_{inc} = \frac{\Delta p_1^*}{p_3^* - p_3} = \frac{\sin^2(\alpha_1 - \alpha_1^*)(p_1^* - p_1)}{p_3^* - p_3}$$
(3.1.10)

Der optimale Inzidenzwinkel wurde nach Aungier mit einer Erfahrungsgleichung aus β_1 und β_3 abgeschätzt:

$$\alpha_1^* = \beta_1 - i^* \text{sgn}(\beta_3 - \beta_1)$$
(3.1.11)

wobei *i** nach

$$i^* = (3.6^{\circ}\sqrt{10\frac{t_2}{L}} + \frac{|\beta_3 - \beta_1|}{3.4})\sqrt{\frac{L}{s_3}} - \frac{|\beta_3 - \beta_1|}{2}$$
(3.1.12)

zu berechnen ist.

Die Gleichung von (3.1.12) ist in **Grad**-Einheit gegeben und soll beachtet werden. t_2 ist die mittlere Dicke vom Leitgitterschaufel, und s_3 die Schaufelteilung $s_3 = 2\pi r_3/N$. Die Länge vom Strömungsweg *L* wurde nach der Methode im oberen Teil festgelegt.

Bestimmung vom Austrittszustand Der Austrittszustand ergibt sich nach einer Massenstrombilanz, die in Abschnitt 3.3 detailliert beschrieben wird. Die Bestimmung für den Endzustand wird durch mehrmalige Annahmen an die Dichte ρ_3 iterative vorgenommen. Man beginnt mit einer überschätzten Dichte $\rho_{3(1)} = \rho_1^*$, mit der die absolute Austrittsgeschwindigkeit c_3 durch Abströmwinkel α_3 und Massenstromerhaltung $c_{3m} = \frac{\dot{m}_3}{\rho_{3(1)}A_3}$ gegeben wird. Nachdem c_3 bestimmt wurde, ist die Enthalpie an dieser Stelle durch

$$h_3 = h_1^* - \frac{1}{2}c_3^2$$

auch bekannt. Der neue thermodynamische Zustand an Punkt 3, insbesondere die Dichte $\rho_{3(2)}$ für die nächste Iteration, kann mit $\operatorname{CoolProp}(h_3, s_{3(1)} = s_1)$ festgelegt werden. Dieser Zustand, kombiniert mit statischem und totalem Zustand am Eintritt, ergibt zugleich eine erste Abschätzung des Verlustfaktors Y, mit dem sich der Austrittstotaldruck p_3^* von $p_{3(1)}^* = p_1^*$ nach p_3 leicht verschiebt. Dieser reduzierte Totaldruck $p_{3(2)}^* < p_{3(1)}^*$ legt den neuen Ausgangspunkt zusammen mit Enthalpieerhaltung $h_3^* = h_1^*$ fest, wobei die Entropie $s_{3(2)} > s_{3(1)}$ nach rechts im H-s-Diagramm geht. Die Berechnung wird mit der korrigierten Dichte $\rho_{3(2)}$ und Entropie $s_{3(2)}$ erneut durchgeführt, bis die erforderte Konvergenz von c_{3m} gefunden, oder einen Überschallzustand festgestellt wurde.

Behandlung des Überschallzustands Die Massenstrombilanz kann, wie im Abschnitt 3.3 erklärt wird, trotz Konvergenz in einem Überschallzustand enden. In solchem Fall ist der Leitgitter verstopft, und der Massenstrom erreicht eine oberere Grenze \dot{m}_{kr} . Die Feststellung des Austrittszustands ist unmöglich, wenn kein Gegendruck nach dem Leitgitter bekannt ist. Dieser Druck kann allerdings in einem Bereich abgegrenzt werden:

 Der maximale Gegendruck p_{3,kr,max} ist der Druck, der nun in der Halspassage aufgebaut wurde. Ist der Gegendruck höher als dieser Wert, findet im Leitgitter keine Verstopfung statt.

2. Der minimale Gegendruck $p_{3,kr,min}$ ist der Druck, mit der eine Verstopfung am Ringquerschnitt des Austritts erzielt wird, d.h. wenn

$$c_{3m} = \frac{\dot{m}}{2\pi r_3 b_3 \rho_3 (1 - \Delta)} = a_3$$

Ist p_3 nicht vorhanden, muss die Berechnung abgebrochen werden. Nach dem Abbruch werden die Stopfgrenze m_{kr} und der mögliche Bereich $[p_{3,kr,min}, p_{3,kr,max}]$ an den globalen Algorithmus vermittelt, damit das Letzte durch Bisektion-Methode eine Entscheidung auf mögliche p_3 treffen kann. Wird p_3 nachträglich eingegeben, kann man eine isentrope Expansion vom Halspassage stromabwärts berechnen und somit die Berechnung für diese Komponente abschließen. Da alle Berechnungen bis zum Abbruch auf Halspassage erfolgreich durchgeführt sind, ist die Entropie am Austritt gleich am Halspassage:

$$s_3 = s_{th}$$

Mit dem Gegendruck wird der thermodynamische Zustand am Austritt bestimmt, mit Enthalpie und Dichte

$$h_3, \rho_3 = \text{CoolProp}(s_3, p_3)$$

sodass die Geschwindigkeit in der Überschallströmung durch

$$c_3 = \sqrt{2(h_1^* - h_3)}$$

gegeben wird. Der zuletzt gefundene Abströmwinkel α_3 sowie die Drehimpulserhaltung von $c_{3\theta}$ gelten in solchem Fall nicht mehr, da die Strömung wegen Stoßwelle in der Halspassage eine Umlenkung erfährt. Es gilt allerdings noch die Massenstromerhaltung, weswegen dieser Winkel durch

$$\alpha_3 = \sin^{-1} \frac{\dot{m}_{kr}}{2\pi r_3 b_3 \rho_3 c_3 (1 - \Delta)}$$
(3.1.13)

neu abgeleitet werden kann. Entsprechend werden $c_{3\theta}$ und c_{3m} durch

$$c_{3\theta} = c_3 \cos \alpha_3$$
$$c_{3m} = c_3 \sin \alpha_3$$
3. Vorgehensweise zur Kennfeldabschätzung

von c_3 neu zerlegt.

3.1.3. Impeller

Der Impeller folgt dem Leitgitter als die zweite beschaufelte Komponente. Die Analyse des Impellers ist grundsätzlich dem des Leitgitters ähnlich, wobei zusätzliche Faktoren einbezogen werden müssen.

Geometrische Abmessungen. Die geometrischen Abmessungen für den Impeller werden ähnlich wie für das Leitgitter benötigt. Für Stelle 1-3, sind jeweils die Radien r_1 , r_2 , r_3 und Höhen des Strömungskanals b_1 , b_2 , b_3 anzugeben.

Neben der Anzahl von Laufschaufeln N können auch die Splitter-Schaufeln N_{SB} eingegeben werden. Das Längenverhältnis vom Splitter-Schaufel zu Hauptschaufel ist durch F_{SB} gekennzeichnet.

Für einige Berechnungen ist es notwendig, auch über die Krümmung κ vom Laufschaufel zu wissen. Mit m_3 die gesamte Länge einer meridionalen Mittellinie und ϕ_1, ϕ_3 jeweils der Winkel zwischen Tangenten dieser Mittellinie und der z-Achse, errechnet man

$$\kappa_m = \frac{|\phi_3 - \phi_1|}{m_3}$$

Für Abschätzung von Spaltverlust soll noch der Abstand zwischen Schaufelspitze und Gehäuse als δ_C vorgegeben sein.

Bestimmung des relativen Abströmwinkels $\alpha_{3,rel}$ Ähnlich wie beim Leitgitter, hängt die Lösung des Impellers im Unterschallbereich auch vom Abströmwinkel ab. Hierzu können die Gl. (3.1.7) und (3.1.8) auch angewandt werden, jedoch sind beide Winkel im rotierenden Koordinatensystem zu behandeln:

$$\alpha_{3,rel} = \tan^{-1}(\frac{r_3}{r_{th}}\tan\alpha_{th,rel}) \in (0^\circ, 90^\circ)$$
(3.1.14)

$$\alpha_{th,rel} = \sin^{-1} \frac{b_{th}o}{s_3b_3} \in (0^\circ, 90^\circ)$$
(3.1.15)

Es muss hingewiesen werden ,dass der relative Abströmwinkel $\alpha_{3,rel}$ anstatt c die relative Geschwindigkeit w beschreibt:

$$\alpha_{3,rel} = \tan^{-1} \frac{w_{3m}}{w_{3\theta}}$$

dies ist bei der Anwendung von Massenstrombilanz-Verfahren zu beachten.

Berechnung von Verlustfaktoren Die Analyse für den Impeller benötigt wie bei anderen Komponenten die Berechnung für Verlustfaktoren Y_i . Der Autor möchte hinweisen, dass für diese rotierende Komponente alle Y_i auf relative Koordinaten bezogen sind, d.h. der totale Austrittsdruck p_3^* in Gl. (3.1.1) muss durch $p_{3,rel}^*$ ersetzt werden:

$$Y_{rel} = \sum_{i} Y_{i} = \frac{p_{1}^{*} - p_{3,rel}^{*}}{p_{3,rel}^{*} - p_{3}}$$

$$p_{3,rel}^{*} = \frac{p_{1}^{*} + Y_{rel}p_{3}}{1 + Y_{rel}}$$
(3.1.16)

Grund für diese Änderung ist, dass alle Verlustfaktoren erst aus relativen Größen vom Impeller sich ergeben können. Die Geschwindigkeit wird mit w anstatt c eingesetzt, wodurch auch die Totalenthalpie am Austritt

$$h_{3,rel}^* = h_3 + \frac{1}{2}w_3^2$$

eine relative Größe ist. Zwischen p_3^* und $p_{3,rel}^*$ muss auch unterschieden werden.

Verlust von Grenzschicht Die Grenzschichtberechnung kann nach der Beschreibungen in Abschnitt 3.2 erfolgen. Es ist zu beachten, dass in dieser rotierenden Komponente sowohl relative Geschwindigkeiten w_1 , w_2 , w_3 als auch absolute Geschwindigkeiten c_1 , c_2 , c_3 einzusetzen sind, da zwischen den 4 Wänden eines Strömungskanals 3 aus dem Impeller stammen und eine das Gehäuse ist.

Die relative Geschwindigkeit mitten im Laufschaufel w_2 wird aus meridionalen Geschwindigkeiten w_{1m} und w_{3m} abgeschätzt, mit der Annahme, dass der zugehörigen Strömwinkel dem Schaufelwinkel gleich ist:

$$w_2 = \frac{w_{1m} + w_{3m}}{2\sin\beta_2}$$

3. Vorgehensweise zur Kennfeldabschätzung

Die Grenzschichtberechnung liefert als Ergebnissen die anteiligen Blockierung Δ , den Verlustfaktor Y_p sowie die mittlere Geschwindigkeitsdifferenz Δw_2 . Die Letzte ist auch für einen weiteren Verlustfaktor Y_{BL} über Schaufelbelastung zuständig.

Inzidenzverlust Der Faktor über Inzidenzverlust im Impeller Y_{inc} hat grundsätzlich die gleiche Form wie beim Leitgitter, siehe Gl. (3.1.10). Unterschiedlich ist die Berechnung vom optimalen Inzidenzwinkel α_1^* .

Der Schlupffaktor

$$\sigma = \frac{c_{1\theta}^*}{u_1 - c_{1m} \cot \beta_1}$$
(3.1.17)

wurde im Werk von Wiesner [6] als Funktion vom Schaufelwinkel β und Anzahl der Schaufeln *N* beschrieben. Ein leicht modifizierter Form wird nach Aungier mit

$$\sigma = 1 - |\sin \phi_1| \frac{\sqrt{\sin \beta_1}}{(N + N_{SB})^{0.7}}$$
(3.1.18)

zur Berechnung eingesetzt. Das Ergebnis von Gl. (3.1.18) braucht eine Korrektur, wenn die Schaufelfestigkeit unzureichend ist. Diese Bedingung wird durch das Verhältnis der Radien $\varepsilon = r_1/r_3$ gegenüber einem Grenzwert von

$$\varepsilon_{\text{limit}} = \frac{\sigma - \sigma_0}{1 - \sigma_0}$$
$$\sigma_0 = \sin(19^\circ + \frac{\beta_1}{5})$$

geprüft. Die Korrektur bei $\varepsilon > \varepsilon_{\text{limit}}$ wird mit $\sigma \to \sigma(1-\xi)$ vorgenommen:

$$\xi = \left(\frac{\varepsilon - \varepsilon_{\text{limit}}}{1 - \varepsilon_{\text{limit}}}\right) \sqrt{\beta_1 / 10}$$

Nachdem die optimale Umfangsgeschwindigkeit $c_{1\theta}^*$ durch (3.1.17) abgeleitet wird, ergibt sich der optimale Inzidenzwinkel nach:

$$\alpha_1^* = \tan^{-1} \frac{c_{1m}}{c_{1\theta}^*}$$

Verluste wegen Schaufelbelastungen Die Strömung ungleichmäßiger Geschwindigkeiten an der Druck- und Saugseite von einer Schaufel erfährt einen zusätzlichen Verlust. Während der Berechnung von Grenzschicht wird die Geschwindigkeitsdifferenz Δw_2 bestimmt. Dieser Wert ist auf die w_2 an der Saugseite zu addieren und von der Druckseite zu subtrahieren. Die gesamte Differenz ist deshalb $2\Delta w_2$.

Der Verlustfaktor wegen Schaufelbelastung Y_{BL} wurde von Aungier für die Analyse von Radialverdichtern in [7] angegeben. In dieser Analyse wird die Form

$$Y_{BL} = \frac{1}{24} (\frac{2\Delta w_2}{w_3})^2$$

angewandt.

Analog hierzu berücksichtigt ein weiterer Faktor Y_{HS} die Ungleichmäßigkeiten in der Richtung von Nabe nach Gehäuse mit

$$Y_{HS} = \frac{1}{6} \left(\frac{\kappa_m b_2 w_2}{w_3 \sin \alpha_3}\right)^2$$

Spaltverlust Der Spaltverlust beschreibt die Energie in der Leckageströmung, die durch den Spalt zwischen Impeller und das Gehäuse ohne Energieumwandlung verloren geht. Dieser Verlustfaktor ergibt sich mit

$$Y_{CL} = \frac{\dot{m}_{CL}\Delta p}{\dot{m}(p_{3,rel}^* - p_3)}$$

Dabei soll den Leckage-Massenstrom \dot{m}_{CL} und die Druckdifferenz am Spalt Δp ermittelt werden. Die Letzte kann man mit der Druckdifferenz über gesamten Schaufel näherungsweise ersetzten.

Die Druckdifferenz am Schaufel wirkt auf die Strömung als Änderung an Drehimpuls¹:

$$\Delta p[rbL(N + N_{SB}F_{SB})] = \dot{m}|r_1c_{1\theta} - r_3c_{3\theta}|$$
$$\overline{rb} = \frac{1}{4}(r_1b_1 + 2r_2b_2 + r_3b_3)$$

Daraus wird die Geschwindigkeit von Leckage-Massenstrom mit inkompressibler An-

¹Nach "Turbine Aerodynamics" von Aungier (Gl. 9-63) wird die linke Seite mit einer mittleren Dichte ρ_{ave} multipliziert — dem Autor dieser Arbeit sieht diese als falsch, da die Einheiten an beiden Seiten der Gleichung nicht übereinstimmen würden. Bestätigt durch ein anderes Buch von Aungier "Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis"(2000), Seite 59, wird die Gleichung ohne ρ_{ave} eingesetzt.

nahme abgeschätzt:

$$u_{CL} = \sqrt{\frac{2\Delta p}{\bar{\rho}}}$$
$$\bar{\rho} = \frac{1}{4}(\rho_1 + 2\rho_2 + \rho_3)$$

daraus kann \dot{m}_{CL} aus einer empirischen Gleichung gefunden werden:

$$\dot{m}_{CL} = 0.816 \bar{\rho} u_{CL} L (N + N_{SB} F_{SB}) \delta_C$$

Bestimmung vom Austrittszustand Die Bestimmung des Austrittszustands im Impeller ist wie beim Leitgitter auch durch Massenstrombilanz (detaillierte Beschreibung im Abschnitt 3.3) zu erfolgen. Der meisten Unterschied liegt jedoch an der Umrechnung zwischen relativer und absoluter Geschwindigkeiten, sowie der geltenden Energieerhaltungssatz.

Die iterative Bestimmung beginnt im Unterschallbereich mit der Ermittlung vom relativen Abströmwinkel $\alpha_{3,rel}$. Jeder Schritt in der Iteration legt eine Dichte am Austritt ρ_3 fest, beginnend mit $\rho_3 = \rho_{1,rel}^*$. Die relative meridionale Austrittsgeschwindigkeit ist dabei

$$w_{3m} = \frac{\dot{m}}{2\pi(1-\Delta)r_3b_3\rho_3}$$

Die Geschwindigkeitskomponente in Umfangsrichtung entspricht dem Abströmwinkel $\alpha_{3,rel}$ mit

$$w_{3\theta} = \frac{w_{3m}}{\tan \alpha_{3,rel}} \tag{3.1.19}$$

und so ist die gesamte relative Geschwindigkeit nach

$$w_3 = \sqrt{w_{3m}^2 + w_{3\theta}^2} \tag{3.1.20}$$

zu berechnen.

Während der Massenstrombilanz für Leitgitter wurde die statische Enthalpie am Austritt von der Totalenthalpie am Eintritt um $\frac{1}{2}c_3^2$ subtrahiert. Basierend auf der Enthalpieerhaltung, gilt die Subtraktion nur für stationären Komponenten. Im Impeller muss ein anderer Erhaltungssatz zwischen Austrittsgeschwindigkeit, der Totalenthalpie am Austritt sowie der am Eintritt gefunden werden. Im Impeller gilt die Erhaltung von Rothalpie

$$h_3 + \frac{1}{2}w_3^2 - \frac{1}{2}u_3^2 = h_1 + \frac{1}{2}w_1^2 - \frac{1}{2}u_1^2$$
$$(h_3 + \frac{1}{2}w_3^2) - (h_1 + \frac{1}{2}w_1^2) = \frac{u_3^2 - u_1^2}{2}$$

wobei h_1 die statische Enthalpie am Eintritt von der örtlichen absoluten Totalenthalpie zu subtrahieren ist:

$$h_1 = h_1^* - \frac{1}{2}c_1^2$$

Somit sind alle Variablen für die Berechnung von h_3 bekannt:

$$h_3 = h_1 + \frac{w_1^2 - w_3^2}{2} + \frac{u_3^2 - u_1^2}{2}$$

Die Entropie s_3 ist eine Größe, die während Massenstrombilanz durch Algorithmus fortschreitend abgeschätzt wird. Mit (h_3, s_3) ist der statischen thermodynamischen Zustand an der Stelle 3 bestimmt. Die relative thermodynamische Totalgrößen sind mit w_3 auch bekannt. Nur fehlt die Totalgrößen in absoluten Koordinaten. Hierzu muss man c_3 wissen. Die meridionale Komponente c_{3m} ist mit w_{3m} gleich:

$$c_{3m} = w_{3m} \tag{3.1.21}$$

und das Geschwindigkeitsdreieck besagt die Beziehung zwischen $c_{3\theta}$ und $w_{3\theta}$ mit

$$c_{3\theta} = u_3 - w_{3\theta} \tag{3.1.22}$$

Das negative Vorzeichen rechts in der Gl. (3.1.22) resultiert aus der Betrachtung, dass $\alpha_{3,rel}$ nach Gl. (3.1.14) immer zwischen 0° und 90° liegt und die Zerlegung von Gl. (3.1.19) ständig positiven Wert gibt. Mit beiden Komponenten von c_3 bekannt, ist

$$c_3 = \sqrt{c_{3m}^2 + c_{3\theta}^2}$$
(3.1.23)

und

$$h_3^* = h_3 + \frac{1}{2}c_3^2$$

Die Festlegung vom Austrittszustand ergibt auch den statischen Austrittsdruck $p_3 =$

 $CoolProp(h_3, s_3)$, mit dem die Gl. (3.1.16) neue Abschätzung an den relativen Totaldruck am Austritt gibt. Mit diesem Schritt wird die Anfangsbedingung in der Iteration für eine neue Runde korrigiert.

Behandlung vom Überschallzustand Der Impeller ist auch einen Ort wo der Massenstrom in Überschallbereich verstopft wird. Ähnlich wie die Analyse beim Leitgitter, muss man bei Feststellung von diesem Zustand die Berechnung abbrechen, und ein Bereich für Gegendruck ($p_{3,min}, p_{3,max}$) ermitteln.

Der maximale Gegendruck $p_{3,max}$ ist in diesem Fall sofort der statische Druck p_3 , da dieser Druck sich nach dem Massenstrombilanz-Verfahren konvergierte. Der minimale Gegendruck wird mit dem Newton-Verfahren gesucht, mit dem die Bedingungen

$$w_{3m} = a_3$$

 $w_{3\theta} = 0$

erfüllt sind. Da die absolute Totalenthalpie am Austritt bekannt ist, ergibt sich die statische Enthalpie für diese Bedingungen

$$h_{3,min} = h_3^* - \frac{1}{2}(u_3^2 + a_3^2)$$

Diese Ermittlung ist fiktiv eine isentrope Expansion vom Totalzustand nach der Randbedingung, wenn die Abströmung unmittelbar nach dem Impeller-Austritt verstopft ist. Die Entropie s_3 bleibt unverändert, daher wird

$$p_{3,min} = \text{CoolProp}(h_{3,min}, s_3)$$

Ist ein Gegendruck $p_3 \in (p_{3,min}, p_{3,max})$ später durch nachfolgende Analyse eingegeben, so können daraus eine Enthalpie und eine Dichte

$$h_3, \rho_3 = \text{CoolProp}(p_3, s_3)$$

bestimmt werden. Die relative Geschwindigkeit w_3 ergibt sich aus der Energiedifferenz

von relativer Totalenthalpie $h_{3,rel}^*$ und h_3

$$w_3 = \sqrt{2(h_{3,rel}^* - h_3)}$$

wobei ihre Komponente durch Massenstromerhaltung

$$w_{3m} = \frac{\dot{m_{kr}}}{2\pi (1-\Delta) r_3 b_3 \rho_3}$$

gegeben ist. Mit sonstigen Größen

$$w_{3\theta} = \sqrt{w_3^2 - w_{3m}^2}$$
$$\alpha_{3,rel} = \sin^{-1} \frac{w_{3m}}{w_3}$$

werden auch c_{3m} , $c_{3\theta}$ und c_3 nach Gl. (3.1.21) bis (3.1.23) abgeleitet.

3.1.4. Diffusor

Als letzte Komponente in der Strömung macht die Berechnung von einem unbeschaufelten Diffusor die endgültige Aussage über den Zustand im Austritt. In dieser Berechnung werden Parameter am Ein- und Austrittsquerschnitt, bezeichnet mit 1 und 2, behandelt.

Der Austrittsdruck eines Diffusors wird zuerst mit Annahme verlustfreier Strömung ermittelt. Hierzu findet die erste Iteration für die Massenstrombilanz statt. Dadurch ermittelt man den idealen Austrittsdruck $p_{2,ideal}$, mit dem einen fiktiven Faktor Δ_2 zur Reduzierung des Austrittsquerschnitts berechnet werden kann. Mit dem neuen Austrittsquerschnitt

$$A_2 \to A_2(1 - \Delta_2)$$

wird der Austrittsdruck p_2 erneut mit gleicher Annahme gesucht. Dieser wird als tatsächlichen statischen Austrittsdruck angesehen. Zum Schluss wird durch eine dritte Massenstrombilanz ohne Einfluss von Δ_2 den Totaldruck p_2^* ermittelt, und somit werden alle Austrittszustände bekannt.

Der Umfangskomponente von Strömungsgeschwindigkeit c_{θ} gilt die Drehimpulser-

haltung. Am Austrittsquerschnitt ist es leicht zu finden:

$$c_{2\theta} = \frac{c_{1\theta}r_1}{r_2}$$

daher können während aller Massenstrombilanzen nur die Komponente c_{2m} als Variable eingesetzt werden.

Austrittsdruck $p_{2,ideal}$ nach verlustfreier Strömung. Dieser Druck ergibt sich aus einfacher Massenstrombilanz:

$$\rho_2 c_{2m} A_{2,\text{ideal}} = \dot{m}_1$$

 ρ_2 wird durch $\text{CoolProp}(h_2, s_2)$ bestimmt. Wegen verlustfreier Annahme gilt $s_2 = s_1$. Die Enthalpie h_2 erhält man von der Gesamtenthalpie am Eintritt h_1^* mit subtrahierter kinetischen Energie $\frac{1}{2}(c_{2\theta}^2 + c_{2m}^2)$

$$h_{2} = h_{2}^{*} - \frac{1}{2}(c_{2\theta}^{2} + c_{2m}^{2})$$

$$h_{2}^{*} = h_{1}^{*}$$
(3.1.24)

Auf der linken Seite in o.g. Gleichung ist somit nur c_{2m} unbekannt, was eine iterative Lösung erlaubt.

Tatsächlichen Austrittsdruck p_2 **mit reduzierten Austrittsquerschnitt** Die Methode nach Aungier sieht die Strömung im Diffusor als teilweise blockiert, d.h. am Austritt wird der Querschnitt um

 $-\Delta_2 A_2$

reduziert:

$$A_2 \leftarrow (1 - \Delta_2) A_2 \tag{3.1.25}$$

Mit dieser Berücksichtigung kann den Austrittsdruck p_2 analog wie $p_{2,\text{ideal}}$ neue berechnet werden. Dabei ist Δ_2 die anteilige Blockade im Austritt. Sie wird empirisch durch die Gleichung

$$\Delta_2 = [K_1 + K_2(D-1)] \frac{LA_1}{A_2 b_1}$$

abgeschätzt. L ist die Länge vom Strömungsweg, D ist ein Diffusionsfaktor:

$$D = \frac{(1 + \sqrt{p_{vr}})^2}{4}$$

und vom Verhältnis der dynamischen Drücke am Ein- und Austritt

$$p_{vr} = \frac{p_1^* - p_1}{p_1^* - p_{2,\text{ideal}}}$$

abhängig. Da die erste Massenstrombilanz den Wert von $p_{2,\text{ideal}}$ bestimmt hat, kann p_{vr} und D unmittelbar berechnet werden.

 K_1 und K_2 sind Koeffizienten nach Aungier, die die experimentellen Daten von [9] wie folgt beschreiben:

$$2\theta_c = 2 \arctan \frac{b_1 (A_2 / A_1 - 1)}{2L}$$
(3.1.26)

$$K_{\theta} = \max(1, \frac{2\theta_c}{11}) \tag{3.1.27}$$

$$K_1 = 0.005 + \frac{K_\theta - 1}{5} \tag{3.1.28}$$

$$K_{2} = \frac{2\theta_{c}}{125K_{\theta}} (1 - \frac{2\theta_{c}}{22K_{\theta}})$$
(3.1.29)

Die Einführung von K_{θ} hat nach Aungier die Absicht, den plötzliche Rückgang der Druckrückgewinnung im Diffusor zu beschreiben, wenn der Ablenkungswinkel $2\theta_c$ ein Grenzwert von 11 Grad übersteigt. Bei der Anwendung von Gl. (3.1.26) bis (3.1.29) soll daher beachtet werden, dass θ_c in Grad zu geben ist.

Totaler Austrittsdruck p_2^* Der totale Austrittsdruck wird am Ende mit Kenntnisse über den entsprechenden statischen Druck p_2 bestimmt. Diese Bestimmung verzichtet auf verlustfreier Annahme und nutzt wiederum den nicht reduzierten Querschnitt A_2 . Dabei ist ein Verfahren nach Abschnitt 3.3 einzusetzen.

3.2. Berechnung von Grenzschichten

Im Abschnitt 3.1 wurden Berechnungen für jede Komponente vorgestellt. Es wird schnell erkannt, dass für alle Analysen ein Verlustfaktor wegen der Grenzschicht gilt. Die Überlegung an Grenzschicht ist ein wichtiger Bauteil in der Analyse, die bereits seit Spiralgehäuse die verlustbehaftete Natur dieser Methode festlegte.

Die Dicke δ einer Grenzschicht ist durch die Stelle mit 99% Geschwindigkeit der Außenströmung definiert:

$$u(\delta) = 0.99u_{\infty}$$

Daraus kommt die Definition von Verdrängungsdicke δ^* , die die Verdrängung am Massenstrom durch Grenzschicht beschreibt:

$$\delta^* = \int_0^\delta (1 - \frac{u}{u_\infty}) \mathrm{d}y \tag{3.2.1}$$

und die Implusverlustdicke θ zur Beschreibung von verlorenem Implus im Grenzschichtbereich:

$$\theta = \int_0^\delta \frac{u}{u_\infty} (1 - \frac{u}{u_\infty}) \mathrm{d}y \tag{3.2.2}$$

Aus Experimenten von Nikuradse [8] setzen viele Literaturen das 1/7-Potenzgesetz über Geschwindigkeitsprofil im Grenzschicht ein:

$$\frac{u}{u_{\infty}} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$$

wodurch die Integrationen (3.2.1) und (3.2.2) folgende Beziehungen liefern:

$$\delta^* = \frac{9}{7}\theta \approx 1.2857\theta$$
$$\delta = \frac{72}{7}\theta \approx 10.2857\theta$$

In dieser Berechnung wurde die Implusverlustdicke θ nach dem Ansatz in [11] mit

$$\theta = \frac{c_f \bar{\rho} L}{8\rho_3} [(\frac{u_1}{u_3})^5 + (\frac{u_2}{u_3})^5 + 1]$$
(3.2.3)

näherungsweise berechnet. Die Subskripte 1-3 haben gleiche Bedeutungen wie die Analyse von Komponenten im Abschnitt 3.1. *u* ist die Strömungsgeschwindigkeit relativ zu einer Wand oder einer Schaufel, *L* ist die Länge vom Strömungsweg. Die Durchschnittsdichte $\overline{\rho}$ ergibt sich gewichtet aus Dichten an den 3 Stellen

$$\overline{\rho} = \frac{1}{4}(\rho_1 + 2\rho_2 + \rho_3)$$
(3.2.4)

Der Reibungskoeffizient c_f Der Reibungskoeffizient c_f wurde nach einem anderen Werk von Aungier[5] abgeschätzt, wobei die empirische Gleichungen ebenfalls zurück auf Experimenten von Nikuradse[8] zu führen sind. Die Abschätzung unterscheidet sich zuerst durch die Reynold-Zahl am Austritt einer Komponente mit $Re_d = \rho_3 u_3 b_3 / \mu$ in laminare, transiente oder turbulente Strömungen:

$$c_{f} = \begin{cases} c_{fl} & \text{laminar } Re_{d} \leq 2000 \\ c_{fl} + (c_{ft} - c_{fl})(\frac{Re_{d}}{2000} - 1) & \text{transient } 2000 < Re_{d} \leq 4000 \\ c_{ft} & \text{turbulent } Re_{d} > 4000 \end{cases}$$

Der laminare Reibungskoeffizient c_{fl} ist von der Oberflächenrauheit unabhängig. Er ist proportional zum Kehrwert von Re_d mit

$$c_{fl} = \frac{16}{Re_d}$$

Mit *d* der Durchmesser oder Breite im Strömungskanal und *e* die absolute Rauheit, wird der turbulente Reibungskoeffizient c_{ft} mit der Maße

$$Re_e = (Re_d - 2000)\frac{e}{d}$$

aus c_{fs} und c_{fr} gewichtet nach

$$c_{ft} = \begin{cases} c_{fs} & \text{hydraulisch glatt } Re_e \leqslant 60\\ c_{fs} + (c_{fr} - c_{fs})(1 - \frac{60}{Re_e}) & \text{hydraulisch rau } Re_e > 60 \end{cases}$$

ermittelt. c_{fs} als Reibungskoeffizient für hydraulisch glatte Wände ist durch die Gleichung

$$\frac{1}{\sqrt{4c_{fs}}} = -2\log_{10}\frac{2.51}{Re_d\sqrt{4c_{fs}}}$$
(3.2.5)

zu lösen. Hierzu reicht der Newton-Raphson-Verfahren (siehe 2.2) mit guter Genauig-

3. Vorgehensweise zur Kennfeldabschätzung

keit. Der Reibungskoeffizient c_{fr} für hydraulisch raue Wände ergibt sich aus

$$\frac{1}{\sqrt{4c_{fr}}} = -2\log_{10}\frac{e}{3.71d}$$
(3.2.6)

Rücksicht an Schaufelbelastung mit Stokesschem Integralsatz Bei der Berechnung von Grenzschichtdicke an einer Schaufel muss noch der Unterschied an Geschwindigkeiten von der Saug- und Druckseite der Schaufel berücksichtigt werden. Der stokessche Satz besagt, dass in einer wirbelfreien Strömung der Integral von Geschwindigkeit über einem geschlossenen Pfad im einfach zusammenhängendem Raum gleich null sein muss:

$$\oint_L \mathbf{v} = 0$$

Am Beispiel eines Schaufelkanals im Leitgitter kann der Integral wie Abb. 3.6 demonstriert werden. Der Geschwindigkeitsvektor und der Integralpfad sind jeweils in Rot und Schwarz gezeichnet. Der Unterschied Δc_2 wird von c_2 der Druckseite abgezogen und auf c_2 der Saugseite addiert:

Abbildung 3.6.: Integral über Geschwindigkeit im Schaufelkanal

$$c_{1\theta} \frac{2\pi r_1}{N} + (c_2 - \Delta c_2)L - c_{3\theta} \frac{2\pi r_3}{N} - (c_2 + \Delta c_2)L = 0$$
$$\Delta c_2 = \frac{\pi}{NL} (c_{3\theta} r_3 - c_{1\theta} r_1)$$
(3.2.7)

Mit Δc_2 soll die mittlere Geschwindigkeit u_2 in Gl. (3.2.3) für beschaufelten Komponenten korrigiert werden. Im Impeller werden anstatt c die relative Geschwindigkeit win Gl. (3.2.7) eingesetzt.

3. Vorgehensweise zur Kennfeldabschätzung

Verlustfaktor Y_p **und Blockade** Δ Laut der theoretischen Analyse von Lieblein und Rodebush[12] hat der Grenzschichtverlust an Totaldruck Δp^* , den Anteil von

$$Y_p = \frac{\Delta p^*}{p_{3,id}^* - p_3} = \frac{2\Theta + \Delta^2}{(1 - \Delta)^2}$$
(3.2.8)

Die ursprüngliche Analyse wurde auf Verdichterstufen in Bezug auf den dynamischen Druck am Eintritt durchgeführt. Für Turbinen wird dieser Bezug am Austritt gemacht. Die Variablen Θ und Δ sind entsprechend die Anteile von Implusverlustdicke θ und Verdrängungsdicke δ^* , bezogen auf der Passagebreite *b*. Sind alle Wände des Strömungskanals in gleichen Koordinatensystem, wie bei allen stationären Komponenten der Fall ist, so sind

$$\Theta = \sum \frac{\theta_W}{b_W}$$
$$\Delta = \sum \frac{\delta_W^*}{b_W}$$

Für den Impeller sind Wände sowohl in rotierenden als auch stationären Koordinaten zu berücksichtigen. Zudem müssen die Grenzschichten an der Druck- und Saugseite der Schaufel noch getrennt behandelt werden. In solchem Fall sollen beide Variablen nach (mit Subskripten W für stationäre Wand und S für Schaufel)

$$\Theta = 1 - \left(1 - \sum \frac{\theta_W}{b_W}\right) \left(1 - \sum \frac{\theta_S}{b_S}\right)$$
$$\Delta = 1 - \left(1 - \sum \frac{\delta_W^*}{b_W}\right) \left(1 - \sum \frac{\delta_S^*}{b_S}\right)$$

berechnet werden. Da alle Werte in der o.g. 2 Gleichungen mit voller Länge in einer Komponente ermittelt worden sind, sollten im Fall eines Impellers die jeweilige Implusverlustdicke am Schaufel θ_S vergrößert werden, um die Teillänge $F_{SB} = L_{SB}/L$ und Anzahl N_{SB} von möglichen Splitterschaufeln zu berücksichtigen.

$$\theta_S \leftarrow \theta_S (1 + \frac{N_{SB} F_{SB}}{N})$$

In der Regel wird diese Grenzschichtberechnung durch das Verfahren zur Massenstrombilanz im Abschnitt 3.3 mehrmals gestartet. Vor jeder neuen Berechnung ist es zweckmäßig, die eingesetzte Geschwindigkeit u_3 in der Gl. (3.2.3) nach zuletzt berechneter Δ zu korrigieren:

$$u_3 \leftarrow \frac{u_3}{1 - \Delta}$$

Besonders bei extrem Off-Design-Betrieb mit größeren Δ führt diese Korrektur zu besseren Ergebnissen und numerischer Stabilität.

3.3. Massenstrombilanz durch Iteration

Die Massenstormbilanz für alle Komponenten wird mit einem speziellen Verfahren, das von Aungier in [14] beschrieben wurde, durchgeführt.

Für diesen Verfahren wird eine Geschwindigkeit am Austritt als Variable angenommen. Der Abströmwinkel α_3 in stationären Komponenten, sowie $\alpha_{3,rel}$ im rotierenden Komponenten, sind durch beschriebene Verfahren festgelegt. Die absolute Geschwindigkeiten *c* sowie *w* können hierzu entsprechend gewählt, und die Geschwindigkeitskomponenten durch die Beziehungen

> $c_{3\theta} = c \cos \alpha_3$ $w_{3\theta} = w \cos \alpha_{3,rel}$ $c_{3m} = c \sin \alpha_3$ $w_{3m} = w \sin \alpha_{3,rel}$

abgeleitet werden.

Am Beispiel für das Leitgitter wird dieses Verfahren verdeutlicht. Das Ziel ist, am Leitgitteraustritt an der Stelle 3, die Entropie s_3 sowie den statischen Druck p_3 so zu bestimmen, dass die hierdurch abzuleitende Dichte ρ_3 zusammen mit meridionalen Geschwindigkeitskomponenten c_{3m} den Austrittsmassenstrom

 $\dot{m}_3 = \rho_3 A_3 c_{3m} = \rho_3 A_3 c_3 \sin \alpha_3$

bildet, der innerhalb von einer relativen Toleranz ε mit dem Eintrittsmassenstrom \dot{m}_1 übereinstimmt:

$$|\frac{\dot{m}_1}{\dot{m}_3} - 1| = |\frac{\dot{m}_1}{\rho_3 A_3 c_3 \sin \alpha_3} - 1| < \varepsilon$$
(3.3.1)

Die Suche nach diesem Punkt kann in H-s-Diagramm dargestellt werden, siehe Abb. 3.7.

Der Verfahren beginnt mit dem Anfangspunkt $p_{3(1)}^* = p_1^*$ und $s_{3(1)} = s_1$. Die Blockie-

3. Vorgehensweise zur Kennfeldabschätzung

Abbildung 3.7.: Darstellung vom Aungier-Verfahren zur Massenstrombilanz in H-s-Diagramm

rung von Grenzschicht am Austritt Δ wird erst mit 0 gesetzt. Die Dichte am Austritt $\rho_{3(1)}$ wird $\rho_{3(1)} = \rho_1^*$ angenommen. Mit diesen Anfangsbedingungen berechnet man mit der ersten Abschätzung (mit Subskript "(1)")

$$c_{3(1)} = \frac{\dot{m}_1}{\rho_{3(1)} A_3 (1 - \Delta) \sin \alpha_3}$$
(3.3.2)

und

$$h_{3(1)} = h_3^* - \frac{1}{2}c_{3(1)}^2$$

Da das Leitgitter eine stationäre Komponente ist, gilt der Erhaltungssatz der Enthalpie mit

$$h_3^* = h_1^*$$

wie in der Abbildung oben als eine waagerechte Gerade gezeichnet wurde. Ist eine rotierende Komponente (Impeller) zu analysieren, kann die Erhaltung von Rothalpie eingesetzt werden, z. B. mit

$$h_{3,rel}^* - h_{1,rel}^* = \frac{u_3^2 - u_1^2}{2}$$
$$h_{3,rel}^* = h_{1,rel}^* + \frac{u_3^2 - u_1^2}{2}$$

Im Leitgitter wird das Arbeitsfluid expandiert. Die tatsächliche Dichte am Austritt ρ_3 liegt unterhalb der Dichte vom Totalzustand 1:

$$\rho_3 < \rho_1^*$$

dazu wird c_3 in der 1. Iteration unterschätzt:

 $c_{3(1)} < c_3$

Die Korrektur kann vorgenommen werden, in dem man c_3 erneut mit $\rho_{3(2)} = \text{CoolProp}(s_1, p_{3(1)})$ analog wie Gl. (3.3.2) als $c_{3(2)}$ berechnet. Hinzu kommt, dass nach der 1. Iteration sich noch der Verlustfaktor $Y_{(1)}$ sowie die Blockierung von Grenzschicht Δ ermitteln lassen, da die Ein- und Austrittszustände sowohl total als auch statisch bekannt sind. Aus der Definition des Verlustfaktors (3.1.1):

$$p_3^* = \frac{p_1^* + Y p_3}{1 + Y}$$

und der Bedingung

 $p_3 < p_1^*$

ist leicht zu erkennen, dass wegen Y > 0

$$p_3 < p_3^* < p_1^*$$

wird. Die 2. Iteration beginnt mit der neuen berechneten $p_{3(2)}^*$ und $h_3^* = h_1^*$ an einem Punkt rechts zu (1), wo die Entropie durch

$$s_{3(2)} > s_{3(1)} = s_1$$

zugenommen hat.

Die Iteration wird beendet, wenn die Bedingung von GI. (3.3.1) erfüllt ist. Diese Methode ist stabil, soweit der gesuchte Punkt im Unterschallbereich liegt. Aus der Aerodynamik ist bekannt, dass entgegen der Unterschallströmung, wo ein Fluid mit einer Verengung am Querschnitt des Strömungskanals sich beschleunigt:

$$\frac{\mathrm{d}A}{A} < 0 \; \Rightarrow \; \frac{\mathrm{d}c}{c} > 0 \quad (c < a)$$

muss bei Überschallströmung der Querschnitt erweitert werden:

$$\frac{\mathrm{d}A}{A} > 0 \; \Rightarrow \; \frac{\mathrm{d}c}{c} > 0 \quad (c > a)$$

Hinsichtlich der Erhaltung des Massenstroms $\dot{m} = \rho A c = \text{konst.}$ wird folgende Bedingung auftreten

$$\frac{\mathrm{d}(\rho c)}{\mathrm{d}c} < 0 \tag{3.3.3}$$

wenn das Verfahren versucht, eine Überschallströmung zu Massenstrombilanz zu führen.

Dieser ist eine instabile Bedingung, da der Massenstrom in wirklicher Überschallströmung wegen Verstopfung auf \dot{m}_{kr} begrenzt ist. Wird ein willkürlicher $\dot{m} > \dot{m}_{kr}$ eingegeben und dieser nicht korrigiert, kann nach einigen Iterationen der Punkt 3 mit sehr große Geschwindigkeit *c* und negative *h* gesucht werden und somit zu numerischen Fehler führen. Es ist wichtig, diesen Fall frühzeitig zu erkennen und entsprechend zu handeln.

Besteht einmal der Verdacht von GI. (3.3.3), wird vor jeder weiteren Iteration zuerst kontrolliert, ob c_3 bereits der Schallgeschwindigkeit a_3 genügend angenähert ist:

$$|\frac{c_{3(i)}}{a_{3(i)}} - 1| < \varepsilon \tag{3.3.4}$$

Diese Kontrolle an Schallgeschwindigkeit muss am Anfang von einer neuen Iteration erfolgen, da es möglich ist, dass bereits $c_{3(i)} \gg a_{3(i)}$ ist und in der nachfolgenden Iteration Fehler auftreten wird. Zusätzlich muss bei allen weiteren Iterationen c_3 auf vorherige Schallgeschwindigkeit begrenzt werden:

$$c_{3(i+1)} = \frac{\dot{m}_1}{\rho_{3(i)} A_3(1-\Delta) \sin \alpha_3} \leqslant a_{3(i)}$$
(3.3.5)

d.h. $c_{3(i+1)}$ behält ihren Wert, wenn nach dem Ausdruck an der linken Seite von (3.3.5) den neuen Wert $c_{3(i+1)} < a_{3(i)}$ liegt. Ansonsten wird $c_{3(i+1)}$ durch $a_{3(i)}$ ersetzt. Mit dieser Änderung wird die Suche im Unterschall-Bereich begrenzt, bis ein Ergebnis nach (3.3.1) oder (3.3.4) gefunden wurde.

Ist die Bedingnung von GI. (3.3.4) erfüllt, so gilt die Überschallströmung als festgestellt. Der Massenstrombilanz-Verfahren muss beendet werden, weil eine Überschallströmung physikalisch ohne Weiteres unmöglich zu bestimmen ist: jetzt haben alle Zustandsparameter in diesen Komponenten nur Einfluss bis zur Halspassage. Um den Austrittszustand festzulegen, muss die Berechnung mit einem Gegendruck am Austritt versorgt werden. Es ist allerdings zu erkennen, dass die Beendigung sowohl nach (3.3.1) als auch nach (3.3.4) ihre Genauigkeit entspricht: die Berechnungen bis zum Austritt oder Halspassage sind abgeschlossen.

Die bekannte Stopfgrenze an Massenstrom, und der zugehörigen Druck am Halspassage, sind wichtige Informationen, die nach Außen (dem globalen Algorithmus im Abschnitt 3.4) weitergeleitet werden müssen. Der globale Algorithmus nutzt diese Informationen, und sucht per Bisektion-Methode einen geeigneten Gegendruck, der seine Randbedingungen erfüllen.

3.4. Erstellung eines Kennfeldes

Mit den Methoden vom Abschnitt 3.1 kann bereits ein Betriebspunkt mit vorgegebenem Eintrittszustand analysiert werden. Diese Analyse hat keine Anforderung an den Austrittszustand, und läuft nur einmal, bis stromabwärts alle Berechnungen abgeschlossen sind.

Die Anfangsbedingungen sind die Totalgrößen p_E^* , T_E^* sowie der Massenstrom m_E^* . Die Drehzahl N als eine Konstante kann auch vorgegeben werden. Soweit keinen Überschallzustand in der Turbine besteht, ist die Analyse eindeutig definiert. Das Druckverhältnis $\Pi = p_E^*/p_A$ wird erst nach Ende bekannt. Da einige Experimente von Radialturbinen ebenfalls mit dieser Methode durchgeführt worden sind (wie bei NASA, siehe [18]), können deren Ergebnisse bereits mit dieser Analyse verglichen werden.

Alternativ können Randbedingungen auf Eintrittsmassenstrom m_E oder statischen Austrittsdruck p_A gesetzt werden. Der totale Druck am Eintritt p_E^* bleibt unberührt, da diese meistens in Versuchsanlagen eine Konstante ist. In solchem Fall müssen die Berechnung iterativ durchgeführt werden, um die Randbedingung zu erfüllen. Dieser entspricht Experimenten, die unter konstanten Umgebungsbedingungen durchgeführt sind, z. B. mit dem Diffusoraustritt im atmosphärischen Druck. In den folgenden Abschnitten werden Algorithmen für diese 2 Fälle beschrieben, da, wie später erkannt wird, für diese Analysen zusätzliche Überlegungen benötigt werden.

3.4.1. Konstanter Massenstrom als Randbedingung

Der erste Fall, eine konstante Randbedingung für die Analyse zu setzen, ist der Massenstrom am Eintritt \dot{m}_E vorzugeben. Dabei soll geprüft werden, ob mit diesem Massenstrom die Turbine im Unterschallbereich arbeiten kann: wenn ja, dann ist der Betriebspunkt eindeutig definiert. Ansonsten ist mindestens eine Stelle in der Turbine im Überschallbereich verstopft, wobei Zweck der Analyse ist, der Massenstrom schrittweise zu reduzieren, um eine Grenze zum Unterschallbereich festzustellen.

Es soll erwähnt werden, dass zwar die Berechnungen in Abschnitt 3.1 mit der Massenstrombilanz vom Abschnitt 3.3 über Stopfgrenze \dot{m}_{kr} innerhalb einer Komponente aussagen können, sind diese Werte nicht als Stopfgrenze der ganzen Radialturbine anzunehmen, denn in einer Radialturbine können sowohl das Leitgitter als auch der Impeller verstopft sein. Die Aufhebung von einem Fall bedeutet nicht, die andere Komponente auch aus der Verstopfung geholt zu haben.

Mit dem ersten Versuch soll der gesuchte Massenstrom \dot{m}_E an die Turbine weitergeleitet werden. Ist dieser Massenstrom im Unterschallbetrieb erzielbar, dann ist die Randbedingung abgeschlossen.

Führt dieser Massenstrom bereits zur Verstopfung, dann ist dieser Massenstrom den maximalen Wert, der den gesuchten Bereich eingrenzt:

$$\dot{m}_{max} < \dot{m}_E \tag{3.4.1}$$

Der minimale Wert \dot{m}_{min} kann mit 0 beginnen, und wird aktualisiert, wenn eine Berechnung in Unterschallbereich landet:

$$\dot{m}_{min} > \dot{m}_E \tag{3.4.2}$$

Die neue Suche kann mit dem Mittelwert $\dot{m}_E = (\dot{m}_{min} + \dot{m}_{max})/2$ anfangen. Wird allerdings der Fall von (3.4.2) noch niemals erfüllt, d.h. ist die Suche noch an keinen Massenstrom im Unterschallbereich gestoßen und $\dot{m}_{min} = 0$ bleibt, dann ist es besser, die obere Grenze zu minimieren, damit der Unterschallbereich schneller erreicht werden kann. In solchem Fall versucht man mit

$$\dot{m}_E = 0.9 \dot{m}_{max}$$

3. Vorgehensweise zur Kennfeldabschätzung

Je nach dem neuen Ergebnis wird der Suchbereich nach (3.4.1) oder (3.4.2) verkleinert.

Die Suche wird beendet, wenn der Suchbereich ausreichend klein ist, d.h. wenn

$$|\frac{\dot{m}_{max}}{\dot{m}_{min}} - 1| < \varepsilon$$

besteht. Dem Nutzer oder Algorithmus im nächsten Abschnitt (3.4.2) soll zusätzlich angezeigt werden, ob dieses Endergebnis die Vorgabe erfüllt hat, oder abweichend eine Stopfgrenze ist.

3.4.2. Konstanter Austrittsdruck als Randbedingung

Die Analyse mit anzustrebendem Austrittsdruck p_A ist ein häufiger Fall und bedarf iterativer Lösung. In dem Fall wird der Eintrittsmassenstrom von 0 aus erhöht, mit dem Zweck, der Austrittsdruck zum gesuchten Wert abzusenken. Die Suche wird zuerst im Unterschallbereich angestrebt. Stellt es sich heraus, dass dieser bis auf Stopfgrenze nicht erzielbar ist, dann muss auch die Überschallanalyse zugeschaltet werden.

Massenstrom als Variable Man kann im Unterschallbereich durch Variation an dem Massenstrom den vorgegebenen Austrittsdruck erreichen, d.h. nach einigen Versuchen mit Eingaben $\dot{m}_{E(0)}$, $\dot{m}_{E(1)}$, ..., den Austrittsdruck als Funktion vom Massenstrom

$$p_A(\dot{m}_{E(i)}) \to p_{A,\text{Vorgabe}}$$

zum Zielwert zu bringen. Die Suche ist grundsätzlich ein Newton-Verfahren, der im Abschnitt 2.2 beschrieben wurde. Eine Änderung an diesem Verfahren ist, den Gradienten nach jeder Berechnung nicht durch neue, infinitesimale Änderung des Massenstroms zu bestimmen, sondern anhand 2 vorheriger Ergebnisse zu extrapolieren.

Am Anfang werden 2 Wertpaare von (\dot{m}_E, p_A) benötigt. Das erste Paar ist ein fiktiver Ansatz mit $p_A = p_E^*$ und $\dot{m}_E = 0$, d.h. eine Turbine mit Austrittsdruck gleich dem Eintrittstotaldruck, und dadurch ohne Massenstrom. Das zweite Paar muss durch tatsächliche Berechnung gefunden werden, bei der ein konservativ abgeschätzter Massenstrom in das Verfahren von Abschnitt 3.4.1 eingegeben wird. Aus beiden Ergebnissen können durch Extrapolation ein weiterer Massenstrom bestimmt werden, der den Austrittsdruck zur Vorgabe bringen soll.

Wird während dieser Iteration mit einem Massenstrom gesucht, bei dem die Turbine bereits verstopft und der Austrittsdruck noch höher als die Vorgabe ist, dann muss um den Massenstrom nicht mehr iteriert werden, da dieser den Austrittsdruck nicht weiter senken kann. Physikalisch ist der Austrittsdruck nun bereits erreicht, in dem sich ein geeigneter Gegendruck nach der verstopften Komponente aufbaut. Die Strategie in der Analyse folgt diesem Konzept, und versucht im weiteren Schritt den Gegendruck so zu bestimmen, dass der Austrittsdruck die Druckbedingung entspricht.

Die erste Abschätzung für \dot{m} Die erste Abschätzung für den Massenstrom legt die Methode im letzten Absatz einen Anfangswert für weitere Iterationen fest. Diese soll eine konservative und robuste Abschätzung sein, mit der sich die Berechnung an einem Betriebspunkt im Unterschallbereich abschließen lässt.

Dieser Massenstrom kann aus der Geometrie vom Leitgitter abgeleitet werden. Angenommen wird die Strömung isentropisch, d.h. die totale Enthalpie und Entropie im Leitgitter ist gleich denen am Eintritt vom Spiralgehäuse. Für die Abschätzung wird der statische Zustand im Leitgitter gesucht, in dem die Strömung eine absolute Geschwindigkeit die halbe der Schallgeschwindigkeit erreicht, und in die Richtung von α_3 fließt.

Die Enthalpie in diesem Zustand ist

$$h_3 = h_1^* - \frac{1}{2}c^2$$

wobei mit $s_3 = s_1$ die Schallgeschwindigkeit *a*, die Dichte ρ sich aus CoolProp entnehmen lassen:

$$a_3, \rho_3 = \text{CoolProp}(h_3, s_3)$$

Mit dem Newton-Verfahren soll die Geschwindigkeit c iterativ gesucht werden, damit

$$\left|\frac{0.5a_3}{c_3} - 1\right| < \varepsilon$$

besteht.

Der Abströmwinkel α_3 im Leitgitter wurde nach GI. (3.1.7) bestimmt. Diese Bestimmung basiert nur auf geometrischen Abmessungen und kann ohne thermodynamischen Berechnungen gefunden werden. Die meridionale Geschwindigkeit c_{3m} ergibt sich aus Zerlegung von c_3 mit dem Winkel α_3

$$c_{3m} = c_3 \sin \alpha_3$$

und der Massenstrom wird mit

$$\dot{m}_3 = 2\pi r_3 b_3 \rho_3 c_{3m}$$

abgeschätzt.

Bestimmung vom Gegendruck in verstopften Komponenten Wie bereits in Abschnitten 3.1 sowie 3.3 mehrmals erwähnt, liegt die problematischste Frage bei der Analyse in der Behandlung der verstopften Komponenten. In einer Radialturbine mit solchen Strömungszuständen, kann die Berechnung nicht einmal stromabwärts abgeschlossen werden. Der Gegendruck unmittelbar nach der verstopften Komponente ist vom Austrittsdruck p_A abhängig, während p_A durch die Randbedingung festgelegt wurde.

Die Bestimmung vom Gegendruck einer Komponente erfolgt nach folgenden Prinzipien:

- 1. Der Gegendruck wird über einem Bereich (p_{min}, p_{max}) gesucht:
 - a) Dieser Bereich ist durch Fehlermeldung während dem Verfahren von Abschnitt 3.3 vorgeschlagen, jedoch darf die Untergrenze p_{min} nicht der Vorgabe $p_{A,Vorgabe}$ unterschreiten. Dieser Überprüfung muss und braucht nur dann vorzunehmen, wenn diese Komponente die letzte Komponente vor dem Austritt ist.
 - b) Für jede neue Suche wird $p_3 = (p_{min} + p_{max})/2$ als Mitte von diesem Bereich ausgewählt und getestet, wie der Austrittsdruck p_A der Radialturbine mit diesem Druck ist.
- 2. Sofern mit p_3 keine nachfolgenden Komponenten verstopft sind,
 - a) wird p_3 zur neuen Obergrenze gesetzt:

$$p_{max} \leftarrow p_3 \quad \text{wenn } p_A > p_{A, \text{Vorgabe}}$$

3. Vorgehensweise zur Kennfeldabschätzung

b) ansonst wird p_3 die neue Untergrenze:

$$p_{min} \leftarrow p_3 \quad \text{wenn } p_A < p_{A, \text{Vorgabe}}$$

3. Die Suche wird beendet, wenn p_{min} und p_{max} sich ausreichend angenähert sind:

$$|p_{min}/p_{max} - 1| < \varepsilon \tag{3.4.3}$$

Wird während der Suche von p_3 eine weitere Komponente, genannt als Komponente 2, auch verstopft, z. B. wenn nach dem Leitgitter auch der Rotor Verstopfung meldet, dann muss die Suche beide Komponenten paarweise einbeziehen. Das Prinzip ist, die p_3 auf so einen Grenzwert zu halten, dass die Verstopfung in Komponente 2 gerade stattfindet:

- 1. In solchem Fall läuft die Berechnung vorerst nur bis Komponente 2. Die Suche wird aber weiterhin durch Bedingung (3.4.3) beendet.
- 2. Die neue Setzung von p_{min} wird so bedingt, wenn Komponente 2 durch p_3 verstopft.
- 3. Andernfalls (ohne Verstopfung) wird p_3 die neue Obergrenze p_{max} .

Hier soll beachtet werden, dass

$$p_{min} < p_3 < p_{max}$$

ständig gilt. Die Untergrenze p_{min} ist die Grenze, bei deren Unterschreitung die Komponente 2 nicht verstopft wird. Sie wird allerdings nur während Verstopfung in Abströmung gesetzt, daher endet die Suche von p_3 immer in einem Stopfzustand für Komponente 2. Die Komponente 2 benötigt somit auch ihren eigenen Gegendruck, für sie muss man diese Methode erneut anwenden, damit die Randbedingung erst durch sie oder noch eine nachfolgende Komponente realisiert wird.

4. Programmatische Umsetzung: RTKF

Die Kennfeldabschätzung für Modelle aus einer CFturbo-Projektdatei, wurde in dieser Arbeit durch ein Computerprogramm "RTKF"(Radialturbine-Kennfeld) durchgeführt. Das Programm wurde als eine Bibliothek in Python 3.5 geschrieben, und nimmt eine einzige Projektdatei von CFturbo als Eingabe. Als Ausgabe wird ein Ergebnisbericht im Format von XHTML erstellt, die sich wie eine Webseite über den Browser lesen lässt. In diesem Kapitel werden die Einzelheiten über das Programm "RTKF" erläutert.

4.1. Python als Programmiersprache

Um die umfangreichen Berechnungen in dieser Arbeit zu realisieren, stehen viele Möglichkeiten zur Verfügung: es könnte in Tabellenkalkulationsprogrammen z. B. Microsoft Excel als ein Arbeitsblatt erstellt, oder in Programmiersprachen wie JavaScript oder Python als ein Computerprogramm geschrieben werden. Um die Vorteile jeweiliger Methode auszunutzen, und wesentliche Nachteile zu vermeiden, ist eine Auswahl notwendig.

Es wird betrachtet, dass die von Aungier beschriebene Methode sich nicht einfach durch chronologische Berechnungen durchführen lassen: hauptsächlich werden Iterationen benötigt, um Massenströmen zwischen Ein- und Austritt vom jeweiligen Element zu bilanzieren. Aus diesem Grund wird eine Lösung durch Tabellenkalkulationsprogrammen verzichtet, da Iteration in Tabellen ohne manuellen Eingriff schwer zu organisieren ist. Stattdessen soll ein eigenständiges Programm implementiert werden.

Als Programmiersprachen kommen vor allem JavaScript und Python wegen ihrer Benutzerfreundlichkeit in Betracht: beide Sprachen sind nahezu plattformunabhängig, und haben flexiblere Datentypen gegenüber anderen üblichen Sprachen wie C, FORTRAN oder Java. Ein Nachteil von JavaScript liegt allerdings vor, dass sie hauptsächlich für den Gebrauch in Internet-Browsern konzipiert ist, und Schwäche bei z. B. Festplatte-Ein-/Ausgabe oder Einbindung mit anderer Bibliotheken haben.

Im Vergleich hierzu kann Python in vielen Aspekten bevorzugt werden: die Programmiersprache ist leicht zu lernen, klar zu lesen, und verfügt über zahlreiche wissenschaftlichen Bibliotheken, darunter scipy für Newton-Raphson-Verfahren in Iteration und CoolProp für Datenbank des Realgasverhaltens. Als eine Sprache, die wie gewohnt auf dem Computer läuft, bietet Python auch vollen Zugriff auf das Dateisystem. Die Entscheidung ist deshalb auf Python getroffen.

4.1.1. Objekt-orientierte Programmierung

Die Objekt-orientierte Programmierung(OOP) ist eine Strategie für viele Programmiersprachen. Mit OOP können Daten und Funktionen an sog. "Objekten" zugeordnet werden, wobei "Objekten" durch vordefinierte Muster ("Klassen") mit voreingestellten Variablen initialisiert werden können.

Diese Organisation für Programm führt dazu, für jeden Begriff Computercodes getrennt zu schreiben, unter Möglichkeiten können Codes auch in separaten Dateien gespeichert werden. In RTKF sind für jede Komponente

- 1. Auszüge von CFturbo-Dateien über geometrischen Abmessungen, sowie
- 2. Algorithmus und dazugehörigen Berechnungsergebnissen

als Objekten aufgebaut.

Währendem die Berechnung läuft, werden neue Variablen als Attribut an einem Objekt registriert. Python erlaubt dem Benutzer, auch die Behandlung von solchen Registrierungen in einem Muster neue zu programmieren, damit Funktionen für eigene Zwecke eingesetzt werden können. Dies bildet den Mechanismus, den ganze Berechnungsablauf automatisch zu verfolgen und in Ergebnisbericht zusammenzufassen, ohne spezifische Vorkenntnisse über den Algorithmen haben zu müssen.

4.1.2. Struktur des Programms

Das Programm RTKF ist technisch eine Bibliothek für Python. Mit Unterverzeichnissen wird es modular aufgebaut:

```
requirements.txt
rtkf/
    calc/
    cfturbo_reader/
    prop/
    report/
       static/
    throat/
    __init__.py
    __main__.py
```

Das Verzeichnis rtkf/ beinhaltet die ganze Bibliothek. Jedes Verzeichnis und Unterverzeichnis beinhaltet eine Datei mit dem Namen __init__.py, die das Verzeichnis zu einem Modul in Python erklärt. Die Datei __main__.py beinhaltet Codes, die beim Starten in Kommandozeilen sofort ausgeführt werden.

Das Modul cfturbo_reader bietet Objekten, die sich nach der Datenstruktur einer CFturbo-Projektdatei oder -Geometriedatei initialisiert und alle Parameter in Arbeitsspeicher lädt. Objekten aus diesem Modul können als Variablen an weitere Teile des Programms übermittelt werden, dadurch sind Zugriff auf Projektparameter für Python-Programme erleichtert.

Das Modul prop ist die Schnittstelle zu CoolProp, die Stoffdatenbank. In diesem Modul werden Codes so geschrieben, dass alle physikalische Größen für die Suche auch als Objekte (anstatt Zahlen) modelliert werden. So ist das Enthalpie-Wert ein Objekt vom Muster Enthalpy, ein Druck-wert ein Objekt vom Muster Pressure, usw. Da der Typ einer Größe im Programm explizit erklärt werden muss, kann einerseits verhindert werden, dass eine Zahl unbekannter Bedeutung irrtümlicherweise für die Suche programmiert wird, oder 2 Größe von unterschiedlicher Bedeutung addiert bzw. subtrahiert werden. Andererseits gibt diese Erklärung jede Größe einen Namen, der vor der Datenbanksuche bereits bekannt sind. Die Suche-Funktion benötigen außer 2 Variablen keine weitere Information:

```
# p als ein Objekt von Typ "Pressure"
p = Pressure(1).units("bar")
# T als ein Objekt von "Temperature"
T = Temperature(400).units()
```

```
point1 = self.queryProperties(p, T) # die Suche veranlassen
# nun sind point1.s -> Entropie,
# point1.h -> Enthalpie,
# point1.rho -> Dichte...
# und viele anderen Größen bekannt.
```

Im Modul calc werden alle Codes für die Berechnungen gespeichert. Für die Berechnung von Spiralgehäuse, Leitgitter, Impeller, Diffusor sind entsprechend 4 Dateien volute.py, nozzle_row.py, rotor.py, diffuser.py zuständig. Weitere Dateien sind zur Bestimmung von Teilfragen, wie die Berechnung von diskretisierten Kurven und Suche von Halspassage nach 2.1.2, die Abschätzung von Massenstrom nach 3.4.2 usw. verwendet.

Der Abbruch von Überschallzuständen wurde technisch durch ein Ausnahme-Objekt ChokedException realisiert. Ein Ausnahme-Objekt (Exception in Python) ist ein Typ von speziellen Signalen. Mit Befehl wie

```
raise ChokedException(...Parameter...)
```

wird dieses Objekt "herausgeworfen" und durch Python-Interpreter erkannt. Die Berechnung wird gestoppt, und die äußere Funktion, die vorher diese Funktion gerufen hat, erhält eine Fehlermeldung. Hat das Massenstrombilanz-Verfahren einen Überschallzustand erkannt, so wird aus dem möglichen Gegendruckbereich (p_{min}, p_{max}) und dem Komponentennamen ein Ausnahme-Objekt gebildet. Das äußere Programm für Kennfeldabschätzung erkennt dann, dass die Komponente verstopft ist und geht in die Überschallanalyse über.

Das Modul throat ist eine Hilfsfunktion für den Benutzer. Es beinhaltet den Algorithmus aus Abschnitt 2.1.2 zur Suche von Halspassage aus einer CFturbo-Geometriedatei, und lässt sich als ein Teilprogramm durch Kommandozeilen starten (siehe Abschnitt 4.1.3). An der Kennfeldabschätzung nimmt dieses Modul nicht teil, es dient nur als ein Werkzeug.

Wie im Abschnitt 4.5 beschrieben wird, sollen alle Berechnungsergebnissen in RTKF im Form einer Webseite dargestellt werden. Nach jeder Berechnung startet das Programm ein Webserver und bietet diese Seite an, dass die Ergebnisse über einen Browser ausgelesen werden können. Die Codes für diesen Webserver und notwendige Datei zur Gestaltung aller Seiten, sind im Modul report programmiert.

4.1.3. Bedienung von RTKF

Für die Bedienung mit Programm RTKF, ist eine Kommandozeilen erforderlich. Für Betriebssystem von Microsoft Windows wird powershell empfohlen (Abb. 4.1).

		0.90020930437		019259
DEBUG: choking ch	neck 0.000091			
DEBUG: c3=87.9695	644 c3_m=81.247095 c	3_theta=33.727	588	
DEBUG: u3=86.6327	21			
DEBUG: Circu. wor	k = 19920.050401			
DEBUG: h3*=394454	1.520203, h3*rel=395	285.221673, h3	=390585.199857	
DEBUG: Kel. error	' = 8./00503E-00			
INFO. NOLOP IS NO	in choked.			
*********** End of	Rotor Solution ***	******		
End Of				
	7 0070000 04	D -		
Diffuser p2 <pres< th=""><th>sure> 7.007060E+04</th><th>Pa</th><th></th><th></th></pres<>	sure> 7.007060E+04	Pa		
Diffuser p2 <pres Bottle v0.12.13 s</pres 	ssure> 7.007060E+04 server starting up ()	Pa using WSGIRefS	erver())	
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui</pres 	ssure> 7.007060E+04 (server starting up (s://localhost:10967/ t.	Pa using WSGIRefS	erver())	
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui</pres 	ssure> 7.007060E+04 server starting up (p://localhost:10967/ t.	Pa using WSGIRefS	erver())	
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20</pres 	ssure> 7.007060E+04 eerver starting up (://localhost:10967/ t. 00): program abortin	Pa using WSGIRefS g due to contro	erver()) ol-C event	
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20 Image</pres 	ssure> 7.007060E+04 server starting up (://localhost:10967/ t. PC PC	Pa using WSGIRefS g due to contro Routine	erver()) ol-C event Line	Source
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20 Image libifcoremd.dll</pres 	<pre>sure> 7.007060E+04 server starting up () ://localhost:10967/ t. 00): program abortin; PC 00007FFE4F4F94C4</pre>	Pa using WSGIRefS g due to contro Routine Unknown	erver()) ol-C event Line Unknown	Source Unknown
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20 Image libifcoremd.dll KENNELBASE.dll</pres 	sure> 7.007060E+04 Herver starting up (://localhost:10967/ t. 00): program aborting PC 00007FFE4F4F94C4 00007FFE730D7EDD	Pa using WSGIRefS g due to contro Routine Unknown Unknown	erver()) ol-C event Line Unknown Unknown	Source Unknown Unknown
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20 Image libifcoremd.dll KERNELBASE.dll KERNELBASE.dll</pres 	<pre>sure> 7.007060E+04 erver starting up () ://localhost:10967/ t. 00): program abortin, PC 00007FFE4F4F94C4 00007FFE762A1FE4 00007FFF762A1FE4 00007FF762A1FE4</pre>	Pa using WSGIRefS g due to contro Routine Unknown Unknown Unknown	erver()) ol-C event Line Unknown Unknown Unknown	Source Unknown Unknown Unknown
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20 Image libifcoremd.dll KERNEL32.0LL ntdll.dll</pres 	<pre>sure> 7.007060E+04 server starting up (; ://localhost:10967/ t. D0): program abortin, PC 00007FFE4F4F94C4 00007FFE730D7EDD 00007FFE762A1FE4 00007FFE763AFE81</pre>	Pa using WSGIRefSo g due to contro Routine Unknown Unknown Unknown Unknown	erver()) ol-C event Line Unknown Unknown Unknown Unknown Unknown	Source Unknown Unknown Unknown Unknown
Diffuser p2 <pres Bottle v0.12.13 s Listening on http Hit Ctrl-C to qui forrtl: error (20 Image libifcoremd.dll KERNELBASS.dll KERNELBASS.dll Ntdll.dll PS H:\02-code></pres 	<pre>sure> 7.007060E+04 ierver starting up (://localhost:10967/ it. 00): program abortin, PC 00007FFE4F4F94C4 00007FFE753D7ED 00007FFE763FC881 00007FFE763FC881</pre>	Pa using WSGIRefS g due to contro Routine Unknown Unknown Unknown Unknown	erver()) ol-C event Line Unknown Unknown Unknown Unknown	Source Unknown Unknown Unknown Unknown

Abbildung 4.1.: Kommandozeilen vor dem Neustart von RTKF

RTKF benötigt neben ihren eigenen Codes auch Bibliotheken, die nicht standardmäßig mit Python geliefert sind. Darunter sind vorallem CoolProp als Stoffdatenbank (Abschnitt 4.2) und bottle, eine Bibliothek mit Webserver-Funktionen. Diese Abhängigkeiten wurden in einer Datei requirements.txt neben rtkf zusammengefasst, siehe 4.1.2. Um diese zu installieren, empfehlt es mit dem Befehl¹:

pip install -r requirements.txt

Um RTKF zu starten, soll grundsätzlich einen Befehl

```
python3 -m rtkf # mit Argumenten
```

in Kommandozeilen gegeben werden. RTKF wurde in Python 3 geschrieben und erfordert die mindeste Python-Version 3.5. Der Befehl muss immer an Python 3 richten. Je nach Betriebssystem und Installation ist unterschiedlich, ob im Befehl python3, python oder gar mit konkreten Version wie python36 sein soll. In folgenden Beispielen wird der Form python verwendet, der Leser soll diesen nicht mit der derzeit² noch gängigen

¹pip ist ein Serviceprogramm für Python, das verschiedene Bibliotheken vom Internet herunterladen und auf Computer installieren kann.

²Anfang 2019

```
Version Python 2.7 verwechseln.
```

Eine kurze Beschreibung über die Bedienung von RTKF kann mit dem Parameter -h aufgerufen werden:

```
PS H:\02-code> python -m rtkf -h
usage: python3 -m rtkf [-h] [--pvar PVAR] [--nvar NVAR] [--
  mvar MVAR]
                       INPUT_FILE {point,massflow,pressure}
Calculate the performance of a given radial inflow turbine.
positional arguments:
  INPUT_FILE
                        The input file, *.cft, *.geo-xml or
    *.yaml
  {point,massflow,pressure}
optional arguments:
 -h, --help
                    show this help message and exit
 --pvar PVAR
  --nvar NVAR
  --mvar MVAR
```

PS $H: \setminus 02 - code >$

Es sind 2 Pflichtangaben vor dem Starten festzulegen:

- INPUT_FILE Diese Angabe legt die Eingangsdatei fest. Das Programm kann entweder mit einer *.yaml Datei (Abschnitt 4.3) oder einem Paar von 2 CFTurbo-Dateien <Projektname>.cft und <Projektname>.geo-xml (Abschnitt 4.4) gestartet werden. Im letzten Fall werden sowohl die .cft Projektdatei mit Auslegungsparametern als auch die exportierte .geo-xml Geometrie-Datei benötigt, allerdings muss der Nutzer nur eine Datei nennen, die andere wird automatisch mit dem zugehörigen Projektnamen gesucht.
- **Randbedingung** Unmittelbar nach INPUT_FILE muss eine Randbedingung ausgewählt werden. Die 3 Möglichkeiten sind point, massflow und pressure, ihre Bedeutungen werden in folgendem Text verdeutlicht.

Vor der Berechnung sind folgende Eingangsparameter

$$p_E^*, T_E^*, N, \dot{m}_E$$

sowie der statische Druck am Austritt

 p_A

einzugeben. p_E^* , N und \dot{m}_E sind aus dem Auslegungspunkt mit Variation durch optionalen Argumenten --pvar, --nvar und --mvar abgeleitet:

$$N = N_{\text{design}} \cdot [\text{nvar}]$$

 $\dot{m_E} = \dot{m}_{\text{E,design}} \cdot [\text{mvar}]$
 $p_E^* = p_{\text{E,design}}^* \cdot [\text{pvar}]$

wobei p_A und $T_E^* = T_{E, design}^*$ aus INPUT_FILE unverändert entnommen werden.

Die Randbedingung regelt, ob in der Berechnung alle Eintrittsparameter verwendet werden soll, und somit die Analyse für diesen fest definierten Eintrittszustand $(\dot{m}_E, p_E^*, T_E^*)$ durchgeführt wird, oder ob ein Parameter am Austritt als Konstante durch Iterationen anzustreben ist:

- Die Randbedingung point startet eine Analyse mit dem Eintrittszustand (\dot{m}_E, p_E^*, T_E^*). Der Umgebungsdruck wird nicht berücksichtigt. Diese Bedingung entspricht den Testfall, wenn das Arbeitsfluid frei in der Radialturbine expandiert und mit einem Austrittsdruck p_A ins Vakuum gesaugt wird.
- Die Randbedingung massflow versucht, den Massenstrom \dot{m}_E an vorgegebenen Wert zu halten. Sollte die Radialturbine im Unterschallbereich arbeitet, dann ist diese Berechnung praktisch identisch mit der point Bedingung. Ansonsten ist die Radialturbine verstopft. Die Berechnung endet mit einem kleineren Massenstrom als Stopfgrenze, die dem Eintrittszustand (p_E^*, T_E^*) entspricht. Auch hier wird der Austrittsdruck p_A nicht berücksichtigt.
- Die Randbedingung pressure versucht, einen Massenstrom herauszufinden, der mit (p^{*}_E, T^{*}_E) einen Austrittsdruck von p_A bildet. Diese erfordert mehrere Iterationen. Die Massenstromvorgabe m
 _E wird ignoriert.

4.2. CoolProp: Datenbank des Realgasverhaltens

Es ist leicht zu erkennen, dass in dieser Arbeit Methoden benötigt werden, die über Stoffdaten berechnen können. In dieser Arbeit werden, im Gegensatz zu der Empfehlung von Aungier mit thermodynamischen Gleichungssystemen, alle Fragen über Stoffdaten durch eine Stoffdatenbank CoolProp gefunden.

Die Auswahl von CoolProp haben vielen Vorteilen:

- 1. Die Bibliothek verfügt über thermophysikalischen Daten von 110 Fluids, die eine Analyse für Radialturbinen mit verschiedenen Arbeitsfluids ermöglicht.
- 2. Mit einer Kombination von 2 Zustandsgrößen als Eingaben, kann die Bibliothek eine weitere Größe nach Auswahl vom Nutzer ausgeben.
- Innerhalb der Bibliothek werden die meisten Berechnungsergebnisse aus Potenzialansätzen der Helmholtz-Energie abgeleitet.[10] Diese Methode garantiert eine breite Einsatzbarkeit und gute Kontinuität, die für die Iterationen in dieser Arbeit wichtig ist.

Am Beispiel an der Umrechnung zwischen statischen und totalen Zustände wird hier gezeigt, wie diese Flexibilität in vorliegender Arbeit ausgenutzt wird. Häufig wird benötigt, aus einer Strömung, wo statischer Druck p und Enthalpie h bekannt sind, die Totalenthalpie h^* und -druck p^* zu ermitteln. Mit CoolProp lässt sich diese Frage leicht beantworten, in dem man zuerst die Entropie

$$s = \operatorname{CoolProp}(p, h)$$

per Datenbank bestimmen. Die Totalenthalpie h^* ergibt sich aus der Summe von statischer Enthalpie und kinetischer Energie der Strömung:

$$h^* = h + \frac{1}{2}c^2$$

Da zwischen statischen und totalen Größen die Entropie gleich bleibt: $s = s^*$, hilft eine weitere Anfrage von CoolProp die Bestimmung von p^* :

$$p^* = \operatorname{CoolProp}(h^*, s)$$

Weitere Größe können auch in o.g. Weise berechnet werden. Für die Massenstrombilanz kommt z. B. ρ in Betracht. Für die Berechnung von Grenzschichten wird noch die dynamische Viskosität μ benötigt.

CoolProp als eine Computerbibliothek ist in verschiedenen Programmiersprachen verfügbar. Für dieser Arbeit wird die Schnittstelle in Python 3 verwendet.

4.3. Direkteingabe mit YAML-Datei

Die einfachste Methode, die Daten einer Radialturbine zur Analyse an RTKF zu übermitteln, ist durch eine YAML-Datei. Diese ist eine gut überschaubare Textdatei, die in einer menschenfreundlichen Struktur manuell geschrieben wird[15]. Diese Methode ist zwar nicht automatisiert (wie mit der Schnittstelle vom Abschnitt 4.4), allerdings bietet sie bessere Flexibilität an den Eingaben (da die Modelle einiger Literaturen sich nicht einfach in CFturbo rekonstruieren lassen), und erleichtert auch die Fehlersuche während der Programmentwicklung.

Die YAML-Datei für RTKF muss alle Eingaben beinhalten, die für die Berechnung jeder Komponente benötigt sind. Dabei schreibt man 5 Absätze: design_point, volute , nozzle_row, rotor und diffuser. Jeder Absatz besteht aus einem Namen und einer Liste von Variablen ausschließlich in SI-Einheiten. Am Beispiel des Leitgitters:

```
nozzle_row:
       17
 N :
 t b: 0.003
 r1: 0.088265
 b1: 0.0079375
 beta1: 0.71122 # 90-49.25 deg
 r3:
     0.069850
 b3: 0.0079375
 beta3: 0.349066 # 20 deg
 L :
      0.033655
 o :
       0.0095250
 r_th: 0.07366
 b_th: 0.0079375
```

Wie beim Programmieren in Python, ist die Hierarchie von Variablen durch Einrückungen bestimmt. Im Anhang A.3 werden komplette YAML-Dateien zur Untersuchungen vom Kapitel 5 beigelegt.

4.4. XML-Schnittstelle zu CFturbo

Wie man aus dem Kapitel 3 entnehmen kann, werden bei der Kennfeldabschätzung nach Aungier geometrische Abmessungen benötigt. Die enge Abhängigkeit zwischen CFturbo-Modellen und Endergebnisse ist so leicht zu erwarten. Sowohl während der Arbeit als auch beim Testen der fertiggeschriebenen Programmen wäre es nicht vorstellbar, wenn alle Eingaben manuell bestimmt und kontrolliert werden müssen.

Es ist daher sinnvoll, das Programm RTKF direkt mit CFturbo-Projektdatei zu versorgen, sodass RTKF alle Werte selbstständig auslesen und die Berechnungen veranlassen. Ist nachher eine modifizierte Geometrie zu berechnen, kann man die Änderungen erst bequem in CFturbo vornehmen und dann das Programm RTKF erneut starten.

Technisch wird diese Schnittstelle durch Interpretieren von CFturbo-Projektdatei in RTKF realisiert. Die CFturbo-Projektdatei sind Dateien mit .cft Endung, der Inhalt wurde in sog. XML-Format gespeichert.

XML(engl. "eXtensible Markup Language") ist eine Textdatei, die in vordefinierte Struktur geschrieben wird, um Datenaustausch zwischen Computern und Programmen zu vereinfachen, ist aber auch menschlich lesbar.

Der Inhalt einer XML-Datei wird hierarchisch aufgebaut: er besteht aus "Tags" oder Knoten, die in Form wie

```
<Meridian Name="Main">
(...Inhalt eines Knotens...)
</Meridian>
```

aussieht. Ein Knoten hat einen Name (hier "Meridian") und ist immer paarweise, beginnend mit "<KnotenName>" und endet mit "</KnotenName>", geschrieben. Einem Knoten dürfen auch Attribute zugeordnet werden. Die Attributen dienen dazu, wichtige Daten über einen Knoten zu speichern. Die Knoten mit Attributen werden mit <KnotenName Attribut1="Inhalt"> beginnen, im o.g. Beispiel ist Name="Main" ein Attribut.

Der Inhalt eines Knotens bestehen aus weiteren Unterknoten, für die die beschriebene Regel gleichermaßen besteht. Die XML-Datei wird somit in einer geschachtelten

4. Programmatische Umsetzung: RTKF

Struktur aufgebaut.

Die CFturbo Projektdatei Die CFturbo-Projektdatei (*.cft-Datei) ist ein spezifisches Format von XML, die neben den allgemeinen Regeln auch weitere Merkmale besitzen.

- **Knotenname.** In XML-Dateien sind Knotenname prinzipiell frei zu wählen. Die CFturbo-Projektdatei speichert daher die meisten Namen von Modellparametern direkt in Knotennamen.
- **Datentyp.** Um die umfangreichen Parameter eines Modells in Projektdatei zu speichern und diese beim nächsten Mal herauszulesen, wird zu jedem Parameter als Attribut einen Datentyp gespeichert. In der vorliegenden Arbeit sind folgende Datentypen von Bedeutung.
 - **String.** "String" oder Zeichenfolge wird selten benötigt. Eine Anwendung ist die Bestimmung von Arbeitsfluid, dessen Name in CFturbo und in CoolProp als String zu geben ist.
 - Integer. Dies ist eine Ganzzahl, und wird für die Bestimmung der Anzahl von Elementen (Drehzahl, Schaufeln, usw.) benutzt.
 - **Float.** Die meisten Daten werden in diesem Datentyp angegeben. Ein "Float" wird in Python als reelle Zahlen interpretiert.
 - **Array.** Ein "Array" ist die Aufstellung von Daten ähnlicher Typen. Am Beispiel sind die Punkten auf einer Kurve. In Python können Daten in einem "Array" sequenziell oder per ihrem Index zugegriffen, und somit automatische Berechnung erlauben.
 - **Object.** Ein "Object" ist eine generelle Form eines Datentyps. In einem "Object" werden verschiedene Parameter (in ihrem eigenen Namen und Datentyp) zusammen gespeichert, um die Struktur über bestimmten Komponenten in CFturbo zu organisieren. Ein Auslegungspunkt ist z. B. ein Object, das das Arbeitsfluid als "String", die Drehzahl als "Integer", den Eintrittsdruck und die Eintrittstemperatur als "Float" beinhaltet. Ein Kurvenpunkt ist auch ein Object, in dem die Koordinaten "x" und "y" jeweils als "Float" gespeichert werden.

4. Programmatische Umsetzung: RTKF

Mit Kenntnissen über die Datentypen und Knotennamen ist es möglich, die ganze Projektdatei in eine Python-interne Datenstruktur umzuwandeln, damit einzelne Parameter schnell eingelesen werden können, anstatt über XML-Bibliothek aus der Textdatei zu suchen. Die "String", "Integer" und "Float"-Typen können unkompliziert die Python-Datentypen str, int und float entsprechen. Ein "Array" entspricht die Liste list, jedoch muss den Attribut Index beim Umwandeln beachtet werden.

Abbildung 4.2.: XML-Ausschnitt von CFturbo-Projektdatei

Da im Typ "Object" mehrere Daten mit Knotennamen zugewiesen und gespeichert werden, ähnelt dieser Typ ein dict³. Allerdings wurde festgestellt, dass manche Daten von ähnlicher Bedeutungen mit gleichen Knotennamen sequentiell gespeichert werden. Ein Beispiel sind meridionale Daten von Ein- und Austritt des Stators und Rotors (Abb. 4.2): beide sind <MerData Type="Object">. Um diese zu unterscheiden, wird aus "Object" eine class gebildet (siehe Abschnitt 4.1.1), in der der Knotenname als Python-Attributname zugewiesen bleibt. Werden mehrere Knoten mit gleichen Knotennamen gefunden, so wird in der class für diesen Namen ein dict gebaut, und der Knotenattribut Name="..." als Index zugeordnet.

Die CFturbo Geometriedatei. Die CFturbo-Geometriedatei (*.geo-xml) wird durch die "Export"-Funktion in CFturbo erzeugt, und dient als ergänzende Datei in der Berechnung. Diese Datei beinhaltet keine Auslegungsparameter, sondern wichtige Geometrie in diskretisierter Form.

Ähnlich zu CFturbo-Projektdatei, ist diese *.geo-xml Datei ebenfalls in XML-Format ausgegeben. Der wichtigste Unterschied liegt daran, dass "Object"-Daten nicht explizit durch Attribut markiert werden. Dieser Unterschied muss für die Programmierung einer Python-Schnittstelle gesondert berücksichtigt werden.

³dict: eine Datenstruktur von Python. Ähnlich wie ein Array können mehrere Objekten in einem dict gleichzeitig geordnet werden, der Zugriff auf jeweiligen Objekt erfolgt jedoch nicht durch Indizien von Zahlen, sondern als Zeichenfolgen gebildeten Namen.
4.5. Ergebnisbericht in XHTML

Man kann sich vorstellen, dass die Vorgehensweise aus Abschnitt 3, wenn sie ins Computerprogramm umgesetzt werden soll, unbedingt recht kompliziert und vorallem mit zahlreichen Schritten in Berechnungen verbunden wird. Tatsächlich kann die Anzahl aller Berechnungsergebnisse für jede Untersuchung an einem Betriebspunkt bei mehr als 200 liegen. Sollen die Ergebnisse aller Schritte dargestellt werden, ist es zweckgemäß, die Ausgabe für den Nutzer anzupassen und die Suche nach einzelner Werte zu erleichtern.

Nach Abschluss jeder Berechnung, die durch Kommandozeile

python -m rtkf ...

veranlasst wurde, wird das Programm sich nicht beenden. Anstattdessen wird ein Webserver auf dem Computer gestartet. Das Programm geht danach in unendlicher Schleife über und wartet auf manuelle Beendigung vom Nutzer. Während der Analyse sind bereits alle Berechnungsergebnisse schrittweise registriert, diese werden im Form einer Webseite dargestellt, die man mit jedem Internet-Browser über die URL-Adresse

http://127.0.0.1:10967

oder

http://localhost:10967

abrufen kann, siehe Abb 4.3.

Dieser Methode hat den Vorteil, mithilfe reif erwachsener Internettechnologie alle Werte und Anmerkungen zusammen in einer Seite fügen und diese tabellarisch dem Nutzer darstellen zu können. Die Lesbarkeit gegenüber Ausgaben in Kommandozeilen oder Textdateien ist leicht zu erkennen. 4. Programmatische Umsetzung: RTKF

2	Û	① 127.0.0.1:10967		
			otor, co to o, agra	
		h3_total	4.143746 ×10 ⁵ J/kg	
		p3_total	1.007613 ×10 ⁵ Pa	
		T3_total	2.881486 ×10 ² K	
		c3_theta	1.409624 ×10 ² m/s	
		c3_m	4.676976 ×10 ¹ m/s	
		c3	1.485187 ×10 ² m/s	
		h3	4.033457 ×10 ⁵ J/kg	
		p3	8.794819 ×10 ⁴ Pa	
		rho3	1.106022 ×10 ⁰ kg/m^3	
		a3	3.338487 ×10 ² m/s	sonic speed

RotorCalculation

L	9.098500 ×10 ⁻²	
b_th	3.469500 ×10 ⁻²	
phi3	0	
r2	4.353100 ×10 ⁻²	
m3	7.465400 ×10 ⁻²	
b1	1.826400 ×10 ⁻²	
N	11	
0	1.753900 ×10 ⁻²	
betal	1.570796 ×10 ⁰	
r_th	3.650200 ×10 ⁻²	
r3	3.672400 ×10 ⁻²	
b2	2.510600 ×10 ⁻²	
phi1	-1.570790 ×10 ⁰	
beta3	6.841700 ×10 ⁻¹	
b3	3.468000 ×10 ⁻²	
	1	

Abbildung 4.3.: Teil eines Screenshots von einer Ergebnisbericht

Bisher sind alle Verfahren für die Kennfeldabschätzung einer Radialturbinen vorgestellt. Es wird betrachtet, dass diese Methode ausführliche Kenntnisse über die Geometrie der Radialturbine erfordert. Neben Abmessungen auf dem Meridianschnitt und Querschnitt, die die außere Kontur jeweiliger Komponente wiedergeben, soll vorzugsweise auch Details über den Schaufeln, z. B. als Schaufelwinkel in meridionalen Koordinaten gegeben werden, da die Rekonstruktion einer Schaufel für die Bestimmung von der Halspassage, ferner die richtigen Vorhersagen von Abströmung und Überschallbetrieb kritisch ist.

5.1. Vergleich mit der Sundstrand-Turbine

Sauret hat in [16] die Turbine von Jones[17] rekonstruiert, die 1986 für das *Sundstrand Power System (SPS) T-100 Multipurpose Small Power Unit (MPSPU)* ausgelegt wurde. 2 Analysen wurden durchgezogen: für den Auslegungsfall wurde eine eindimensionale Methode angewandt. Für Off-Design-Punkten wurden CFD-Rechnungen durchgeführt. Allerdings wurden die originalen Experimenten von Jones ohne vergleichbares Spiralgehäuse, wie in dieser Analyse benötigt wird, angeordnet. Ein Vergleich wird daher nur dann möglich, wenn die Berechnung von einigen Komponenten ausgelassen sind. Mit der YAML-Format als Dateieingabe im Abschnitt A.3 können die Eingangsparameter für Leitgitter oder Impeller überschrieben werden, sodass die programmtechnische Implementierung zumindest an einzelne Komponente für Richtigkeit getestet werden kann.

5.1.1. Vergleich am Auslegungspunkt für den Impeller

Die Abmessungen des Impellers in diesem Test wurde von Sauret ausführlich beschrieben. Die wichtige Abmessungen sowie meridionale Kurven sind vorhanden. Auch wurde die Fläche von der Halspassage angegeben, siehe Tabelle 5.1.

Variable	Wert	Einheit	Anmerkung
N	16	-	
N_{SB}	0	-	
F_{SB}	0	-	
b_1	6	mm	
b_2	9.68	mm	
b_3	21.6	mm	
β_1	90	0	
eta_3	40	0	
r_1	58.2	mm	
r_2	42.1	mm	
r_3	28.2	mm	
L	56.4	mm	abgeschätzt mit CFturbo
m_3	54.4	mm	abgeschätzt mit CFturbo
ϕ_1	-90	0	
ϕ_3	0	0	
0	17.9	mm	abgeschätzt mit CFturbo
b_{th}	6.57	mm	abgeschätzt mit CFturbo
r_{th}	38	mm	abgeschätzt mit CFturbo
δ_c	0.23	mm	

Tabelle 5.1.: Abmessungen für Impeller nach Sauret und Jones

Ein Modell wurde mit der Daten über meridionalen Kurven des Impellers in CFturbo rekonstruiert. Mit diesem Modell können Abmessungen o, b_{th} , r_{th} von der Halspassage gefunden werden. Auch die Länge von der meridionalen Mittellinie m_3 sowie dem Strömungsweg L können in dieser Weise bestimmt werden.

Die Geschwindigkeiten sowie den thermodynamischen Eintrittszustand des Impellers wurden fiktiv als Berechnungsergebnisse an das Leitgitter gesetzt, sodass man die Berechnung vom Impeller veranlassen kann, siehe Tabelle 5.2. Diese Eingaben entsprechen den Daten in Saurets Beitrag[16], wobei unbekannte Größe (die Enthalpie und Entropie) durch CoolProp ergänzt wurden.

Es wurde herausgefunden, dass die Methode von Aungier nicht problemlos einzusetzen ist. Das Problem liegt bei der Berechnung von Verlust wegen Grenzschicht,

Variable	Wert	Einheit
m	0.33	kg/s
N	106588	\min^{-1}
p_3^*	538600	Pa
p_3	328760	Pa
T_{3}^{*}	1056.5	K
h_3^*	1237.55	kJ/kg
h_3	1096.52	kJ/kg
$s_3 = s_3^*$	4.7366	$kJ/(kg \cdot K)$
c_3	582.1	m/s
$c_{3\theta}$	566.7	m/s
c_{3m}	133	m/s
$ ho_3$	1.2264	$ m kg/m^3$

Tabelle 5.2.: Fiktive Austrittszustände am Leitgitter

wobei sowohl die Grenzschichtdicke als auch den Verlustfaktor dazu führen können, dass das Programm bereits während der Iteration von einer Verstopfung im Impeller ausgeht, die nicht in der Analyse von Sauret erwähnt war. Mit einer ersten Erfahrung wird die Summe aller Verlustfaktoren *Y* überprüft, diese ergibt sich im beschriebenen Fall aus:

$$Y - Y_p = Y_{inc}(0.324\%) + Y_{BL}(1.63\%) + Y_{HS}(1.13\%) + Y_{CL}(22.2\%) = 25.3\%$$

Der Verlustfaktor von Grenzschicht Y_p liegt nach Berechnung bei 30%-35%. Wird Y_p mit in Y summiert, kann der Autor keine übereinstimmenden Ergebnissen wie in [16] feststellen, eigentlich zeigt das Iterationsverfahren in solchem Fall numerische Instabilität: diese falsche Abschätzung an Grenzschichtdicke und -Verluste führt die Iteration immer weiter zu sehr unrealistischen Bedingungen, in denen die Grenzschicht nur noch ungenauer zu berechnen ist. Mit weiterer manuellen Korrekturen wird dem Autor gezeigt, dass eine Lösung nur bei etwa $Y_p < 10\%$ realisierbar ist.

Die Analyse für Impeller kann daher nur ohne Y_p und Δ erfolgen. Diese Berechnung fehlt zwar an Genauigkeit, mit ihrer Ergebnissen kann jedoch die Richtigkeit sonstiger Algorithmen, insbesonders die Behandlung von Geschwindigkeitskomponenten in relativen und absoluten Koordinaten geprüft werden, siehe Abb. 5.1.

Es wird beobachtet, dass die relative Strömungsgeschwindigkeit in dieser Arbeit mit 378.1 m/s etwa 1.33% größer als die Berechnung nach Sauret mit 373.4 m/s ist. Der

(- dieser Arbeit, - - - nach Sauret)

Abbildung 5.1.: Vergleich der berechneten Geschwindigkeitsdreiecken

Unterschied an den relativen Abströmwinkel $\alpha_{3,rel}$ von 22.7° in dieser Arbeit ist um 10° weniger als den 32.7° nach Sauret. Da der Abströmwinkel in der Unterschallberechnung nach Gl. (3.1.14) und (3.1.15) zuerst aus Geometrie berechnet worden ist, soll dieser Unterschied zurück auf ungenaue Rekonstruktion von Modellen zu führen.

5.1.2. Vergleich mit Off-Design CFD-Rechnungen

Es wird zunächst angestrebt, die CFD-Rechnungen in der Literatur zu reproduzieren. Da es sowohl im Experimenten als auch in den CFD-Rechnungen das Spiralgehäuse fehlt, wird das Programm modifiziert, sodass eine Massenstrombilanz am Ringquerschnitt unmittelbar vor dem Leitgitter stattfindet. Die Massenstrombilanz ist eine vereinfachte Methode im Abschnitt (3.3), mit der meridionalen Geschwindigkeit c_{1m} als Variable:

$$c_{1m} = \frac{\dot{m}}{2\pi r_1 b_1 \rho_1}$$

Der Anströmwinkel wird mit dem Schaufelwinkel β_1 angenommen. Daher wird

$$c_{1\theta} = c_{1m} / \tan \beta_1$$

 $c_1 = c_{1m} / \sin \beta_1$

Die Analysen von Sauret wurden an reduzierten Eintrittszuständen ausgeführt, mit

$$T_E^* = 477.6 \text{ K}$$

 $p_E^* = 413.6 \text{ kPa}$
 $p_A^* = 72.4 \text{ kPa}$
 $N_0 = 71700 \text{ min}^{-1} = 1195 \text{ s}^{-1}$

der Eintrittszustand vor dem Leitgitter werden daher ebenfalls mit diesen Vorgaben ausgewählt.

Als Randbedingung für die Analyse wird konstanter Austrittsdruck gesetzt. Nachher sind Berechnungen an verschiedenen Drehzahlen $N = (0.65 \sim 0.78)N_0$ veranlasst. Der Wirkungsgrad

$$\eta_{T-S} = \frac{W}{h_E^* - h_{3,\text{ideal}}}$$
$$W = c_{1\theta}u_1 - c_{3\theta}u_3$$

am Impeller in Abhängigkeit zur Laufzahl

$$\nu = \frac{u_1}{\sqrt{2(h_E^* - h_{3,\text{ideal}})}}$$

können nach der Analyse mit der Literatur verglichen werden, siehe Abb. 5.2. Die komplette Eingabedatei in YAML-Format befindet sich im Anhang A.2.

Da kein Einfluss von Grenzschicht im Impeller in dieser Analyse mitberechnet wurde, liegen die Ergebnisse dieser Arbeit um circa 2% höher als die aus Experimenten und CFD-Berechnungen. Diese Ergebnisse können allerdings noch die Entwicklung von $\eta_{T-S}(\nu)$ mit dem Spitzenwert um etwa $\nu = 0.75$ reproduzieren.

Außerdem meldete die abgebildete Analyse, wie auch Sauret festgestellt hat, bei allen Betriebspunkten Verstopfungen im Leitgitter. Der kritischen Druck wurde mit $p_{3,kr} =$ 214.6 kPa ermittelt. Bei $\nu = 0.75$ mit Austrittsgeschwindigkeit $c_3 = 463.2$ m/s und örtlicher Schallgeschwindigkeit $a_3 = 386.6$ m/s ergibt sich die relative Mach-Zahl Ma = 1.20für das Leitgitter, die mit der Berechnung von Sauret (Abb. 5.3) gut übereinstimmt.

Dieser Vergleich ist technisch ein guter Testfall für den Algorithmus in Abschnitt 3.4.2, der gezeigt hat, dass die Analyse mit Randbedingung von konstantem Austritts-

Abbildung 5.2.: $\eta_{T-S}(\nu)$ im Vergleich mit der CFD-Analysen von Sauret

druck in sowohl Unterschall- als auch Überschallbereichen realisierbar ist.

5.2. Vergleich mit der NASA 6,02" Radialturbine

In ursprünglicher Literatur von Aungier wurde die beschriebene Methode anhand Versuchsdaten einer 6.02-Zoll-Radialturbinen von NASA getestet. In dieser Arbeit wird angestrebt, den gleichen Vergleich durchzuführen.

Die 6.02"-Radialturbine ist eine der vielen Radialturbinen mit verschiedenen Abmessungen, die in 1960er Jahren an NASA gefertigt und zwecks Forschungen von Energiesystemen für Raumfahrten untersucht wurden. Diese Turbine hat 14 Schaufelblätter im Leitgitter und 11 im Impeller. Zusätzlich sind 11 Splitter-Schaufel mit 1/3 der vollen Längen vorhanden. Die Zeichnungen über ihren Quer- und Meridianschnitt können von [18] entnommen werden. In einer weiteren Literatur [19] wurde ein Meridianschnitt vom Diffusor für Tests mit der gleichen Radialturbine angegeben. Es wurde daher versucht, ein Modell für diesen Testfall aus beiden Literaturen zu erstellen.

Alle Zeichnungen (Abb. A.1 im Anhang A.1) können als vergrößerte Formaten mit

Abbildung 5.3.: Verteilung über relative Mach-Zahlen, von Sauret[16]

CAD-Software gemessen werden. Die Messung an Querschnitt erfolgt wegen höherer Bildqualität mit relativ besserer Genauigkeit. Demgegenüber sind Messungen auf der Übersichtszeichnung problematisch, da schon die Linienbreite zu erheblichen Fehler führen kann.

Die Schaufelwinkel des Leitgitters sind leicht aus der Zeichnung zu finden. Des Impellers müssen anhand CFturbo abgeschätzt werden, indem ein Impeller mit ähnlicher Querschnitt erzeugt wurde, siehe Abb. 5.4. Es wurde herausgestellt, dass für Impeller $\beta_3 \approx 39.2^{\circ}$ ist. Daraufhin wird eine komplette YAML-Eingabedatei geschrieben, siehe Anhang A.3.

5.2.1. Erste Kennfeldabschätzung

Mit dieser Datei wird ein Kennfeld $\dot{m}(\Pi_{T-S})$ für Drehzahl $N = \{0.4, 0.8, 1.0, 1.1\}N_0$ mit $N_0 = 22527 \text{ min}^{-1}$ berechnet.

Die NASA-Experimente wurden mit konstantem Eintrittszustand durchgeführt, bei der die Messungen an Druckverhältnis Π_{T-S} mit veränderten Austrittsdrücken durchgezogen wurden. Zum Vergleich braucht die Berechnung in dieser Kennfeldabschätzung keine Randbedingung an Austrittszuständen: am Eintritt werden Massenstrom

$$\dot{m} = 0.6, 0.7, \dots 1.4 \text{ lb/s} = \{0.6, 0.7, \dots 1.4\} \times 0.4536 \text{ kg/s}$$

Abbildung 5.4.: Rekonstruktion von der NASA-Turbine in CFturbo

samt allen thermodynamischen Zuständen

$$T_E^* = 288.15 \text{ K}$$

 $p_E^* = 101325 \text{ Pa}$

festgesetzt. Solange die Berechnung im Unterschallbereich landet, wird sich ein Druckverhältnis ergeben, das mit den NASA-Experimenten vergleichbar ist.

Das berechnete Kennfeld in Abb. 5.5a zeigt richtiges Verhalten von Massenströmen in Abhängigkeit zu Druckverhältnissen. In Drehzahlbereich 80%~110% ist der Massenstrom jedoch an jedem Druckverhältnis um etwa 20% höher als Versuchsdaten. Der Autor von dieser Arbeit geht davon mit einem systematischen Fehler aus, der vermutlich zu den Fehlern in Geometrie zurückzuführen ist.

5.2.2. Zweite Kennfeldabschätzung mit korrigierter Geometrie

Diese Vermutung lässt sich bestätigen, indem man die Breite des Strömungskanals im Leitgitter $b_1...b_3$ und am Eintritt des Impellers b_1 noch einmal überprüft. Es wird festgestellt, dass die NASA-Zeichnung auf dem Bildschirm eines 14-Zoll Monitors in 800% vergrößerter Format eine Linienbreite von circa 2mm hat. Entsprechend hat der Radius des Impellers eine Länge von circa 240mm. So wird sich ein Messfehler von

$$\delta b = \frac{2 \text{ mm}}{240 \text{ mm}} \times \frac{6.02 \times 25.4 \text{ mm}}{2} = 0.64 \text{ mm}$$

ergeben. Der relative Fehler im Bezug auf $b_1 = 19.8 \text{ mm}$ des Leitgitters wird

$$\frac{0.64\times 2}{19.8}\times 100\% = 13\%$$

Man kann aus dieser einfachen Berechnung sehen, dass dieser Messfehler nicht unerheblich ist. Es wurde daher eine neue Kennfeldabschätzung mit reduzierten Breiten des Strömungskanals durchgeführt. Für Leitgitter werden $b_1 = b_2 = b_3 = b_{th} = 18.3 \text{ mm}$ gesetzt, abgezogen aus den Werten in der 1. Abschätzung von 19.8 mm um 1.5 mm. Diese neuen Ergebnisse sind in Abb. 5.5b dargestellt.

Diese neue Berechnung zeigt deutliche Verbesserung im Vergleich zu der 1. Abschätzung und zugleich die Empfindlichkeit dieser Berechnung an den geometrischen Eingangsparametern. Es soll bei der Anwendung von dieser Methode immer erstrebt werden, die Geometrie möglichst genau zu spezifizieren.

5.2.3. Ermittlung der Stopf- und Pumpgrenze

Aus den Eingaben vom letzten Abschnitt kann auch die Stopfgrenze ermittelt werden. Diese Grenze entspricht den Massenströmen, mit denen die Berechnung ohne Verstopfung-Meldungen abgeschlossen werden kann. Es wurde zuerst manuell abgeschätzt, dass dieser kritische Massenstrom etwa zwischen $1.4 \sim 1.6$ lb/s liegt. Programmtechnisch kann daher eine Suche in diesem Bereich veranlasst werden, indem \dot{m} schrittweise und jeweils um 0.2 kg/s erhöht wird. Da nur erfolgreich abgeschlossenen Ergebnissen in Diagramm eingetragen werden, erkennt man diese Grenze am Ende aller Linien von konstanter Drehzahl, siehe Abb. 5.6a.

Diese Stopfgrenze ist gleichzeitig auch die Grenze, mit der man ohne Randbedingung an p_A^* oder \dot{m} einfach stromabwärts mit dem Programm berechnen kann. Denn wie bereits in Abschnitt 3 erwähnt, kann Massenstrom in Überschallbereich den Betriebszustand nicht mehr eindeutig definieren. Um einen Punkt rechts entlang der Grenzlinie zu berechnen, müssen den Ein- und Austrittsdruck zuerst entsprechend mit erwünschten Π_{T-S} eingestellt werden.

Ist der Massenstrom zu gering, wie für die NASA-Turbine etwa $\dot{m} < 0.2$ lb/s, kann einen weiteren Grenzfall auftreten. Die Umfangsarbeit wird dabei negativ, und der Totalenthalpie am Austritt wird höher als am Eintritt: anstatt Energie aus dem Arbeitsfluid zu entnehmen, wird Arbeit dem Fluid verrichtet. Diese Grenze wird Pumpgrenze genannt. Sie ist beim Testen analog wie der Stopfgrenze zu ermitteln: man senkt der Massenstrom in kleinen Schritten, bis einen mathematischen Fehler in der Berechnung von Wirkungsgrad $\eta_{T-S} = W/\sqrt{h_E^* - h_A}$ wegen $h_E^* - h_A < 0$ auftritt.

Die Ergebnisse von Pumpgrenzen können mit Bedingung W < 0 oder $\eta_{T-S} < 0$ aus aller Ergebnissen gefiltert werden. Die sind die wenige Betriebspunkten, bei denen die Turbine bereits in Pumpenbetrieb arbeitet, jedoch $h_E^* > h_A$ noch gilt. Werden alle solchen Punkten ins Diagramm eingetragen, ist eine Kurve zu beobachten, siehe Abb. 5.6b.

Abbildung 5.5.: Kennlinien der NASA 6,02-Zoll Turbinen

Abbildung 5.6.: Ermittlung der Stopf- und Pumpgrenze

6. Zusammenfassung

Die Methode zur Kennfeldabschätzung von Radialturbinen nach Aungier ist eine eindimensionale Methode, die aus der Analyse an einzelnen Komponenten hinsichtlich verschiedenen Verlustfaktoren und einem komplizierten Iterationsalgorithmus für die Erhaltung an Randbedingungen besteht. Gekennzeichnet durch die Behandlung von Halspassage und iterative Suche in Überschallbereich, bietet diese Methode gute Möglichkeit, auch Radialturbinen mit verstopftem Leitgitter und/oder Impeller zu analysieren.

In der vorliegenden Arbeit wurde die ursprüngliche Beschreibung von Aungier geklärt und die Schritte in Details untersucht. Nachher wurde zwecks praktischer Überprüfung ein Prototyp namens "RTKF" programmtechnisch in Python 3 umgesetzt. Mithilfe vom Software CFturbo können Abmessungen von 2 Turbinen aus Literaturen abgeschätzt und in geeigneten Form für Tests mit RTKF verarbeitet werden.

Gegenüber der 1. Radialturbine von Sundstrand, wurden die Funktionsfähigkeit und Richtigkeit des Programms RTKF anhand geometrischen Angaben und anschließenden CFD-Rechnungen nach Sauret geprüft. Sowohl die Berechnung im Unterschallbereich, als auch Lösung im Überschallbereich kann das Programm durchführen. Jedoch wurde festgestellt, dass die Berechnung von Grenzschicht im Impeller für diesen Testfall zur numerischen Instabilität führen kann und muss vorerst deaktiviert werden. Dadurch erhöht sich der total-zu-statische Wirkungsgrad um etwa 2% im Vergleich zu Versuchsdaten.

Mit der 2. Radialturbine von NASA wurde versucht, ein komplettes Kennfeld zu erzeugen. Der erste Versuch hat etwa 20% mehr Massenstrom an gleichen Druckverhältnissen gegenüber Versuchsdaten berechnet. Nach genauer Überprüfung in der Geometrie wurde festgestellt, dass bereits den Messfehler während Digitalisierung und Rekonstruktion der Radialturbine zu diesen Fehler führen kann. Nachdem dieser Messfehler beseitigt wurde, erzeugt die Berechnung deutlich verbesserte Ergebnisse.

6. Zusammenfassung

Die Empfindlichkeit dieser Methode an geometrischen Eingaben wird dadurch erkannt. Zum Schluss wird die Ermittlung der Stopf- und Pumpgrenze für diese Radialturbine demonstriert.

Dresden, Feburar 2019

A. Anhang

A.1. Meridian- und Querschnitt der NASA 6.02" Radialturbine

Abbildung A.1.: Zeichnungen über die NASA 6.02"-Turbine

A.2. YAML-Datei für Sundstrand Turbine

```
design_point:
 medium: Air
 T_total_inlet: 477.6
 p_total_inlet: 413.6e+3
 p_static_outlet: 72.4e+3
 m_dot: 0.33
 nRot: 1195
volute:
 SKIP: true # making nozzle_row as entry
 A1: 0
 r1: 0
 b3: 0
 r3: 0
nozzle_row:
 N: 19
 t_b: 0.51e-3
 r1: 74.0e-3
 b1: 6.35e-3
 beta1: 0.576 # 33deg
 beta2: 0.418879 # 24 deg
 r3: 63.5e-3
       6.0e-3
 b3:
 beta3: 0.19198 # 11deg
     29.33e-3
 L:
      4.3e-3
 o :
 r_th: 65.75e-3
 b_th: 6.0e-3
rotor:
 N: 16
 N_SB: 0
 F_SB: 0
```

```
b1: 6.0e-3
 b2: 9.68e-3
 b3: 21.6e-3
 beta1: 1.57079 # 90
 beta3: 6.9813e-1 # 40 deg
 r1: 58.2e-3
 r2: 42.1e-3
 r3:
      28.187e-3
 L: 56.4e-3
 m3: 54.38e-3
 phi1: -1.57079
 phi3: 0
 o: 17.87e-3
 r_th: 40.0e-3
 b_th: 6.57e-3
 delta_c: 0.23e-3
 delta_d: 0.4e-3
diffuser:
 SKIP: true
 z1: 0
 z2: 157.5e-3
 r1: 26.0e-3
 r2: 24.75e-3
 b1: 21.6e-3
 b2: 49.5e-3
```

A.3. YAML-Datei für NASA 6.02" Turbine

```
design_point:
 medium: Air
 T total inlet: 288.15
 p_total_inlet:
                101325
 p_static_outlet: 100000
 m_dot: 0.45359
 nRot: 375.45
volute:
 A1: 0.0075076 # r=97.77mm
 r1: 0.15606
 r3: 0.097145
 b3: 0.019806
nozzle_row:
 N: 14
 r1: 0.0960
               # 3.787 inch
 b1: 0.019806
 beta1: 0.57694  # radian, = 33.056 deg
 beta2: 0.38965
 r3: 0.0780 # 3.075 inch
 b3: 0.019806
 beta3: 0.20237  # radian, = 11.5950 deg
 L: 0.044278
 o: 0.011740
 r_th: 0.083688
 b_th: 0.019806
rotor:
 N :
       11
 N_SB: 11
 F_SB: 0.333333
 b1: 0.018433
```

b2: 0.025106 b3: 0.034680 beta1: 1.570796 # 90 deg beta3: 0.68417 # 39.2 deg r1: 0.076454 # 3.01 in r2: 0.043531 r3: 0.036724 L: 0.090985 m3: 0.074654 phi1: -1.57079 phi3: 0 o: 0.017539 r_th: 0.036502 b_th: 0.034695 delta_c: 3.81e-4 delta_d: 0.010 diffuser: z1: 0 z2: 0.22860 # 9 inch r1: 0.036724 r2: 0.105937 b1: 0.034680 b2: 0.029480

A.4. Digitale Dokumenten

Das Programm "RTKF", die Berechnungsergebnisse mit diesem Programm, sowie alle sonstigen Materialien zur Erstellung dieser Diplomarbeit, sind in der beigelegten CD gespeichert:

 $/{\tt Berechnungen} \ Berechnungsergebnissen \ f"ur Sundstrand- \ und \ NASA-Turbine$

 $/ {\tt Programm}$ Das Programm "RTKF" und ein Skript ${\tt nasa.py}$ zur Erstellung des Kennfeldes

/Literaturen Die referenzierte Literaturen in *.PDF-Format (Bücher ausgenommen). /Textarbeit Text, Bilder, Zeichnungen, usw. zur Erstellung dieser Diplomarbeit.

Literaturverzeichnis

- NASA Contributions Turbi-[1] GLASSMAN, Arthur J., 1980. to Radial ne Aerodynamic Analyse. In: NASA Technical Reports Server [on-11.11.1980 16.08.2018]. Verfügbar line]. [Zugriff am: unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810004508.pdf
- [2] GLASSMAN, Arthur J., 1976. Computer program for design anaof radial-inflow turbines. In: NASA Technical lysis Reports Server [online]. 02.1976 [Zugriff am: 16.08.2018]. Verfügbar unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760010058.pdf
- [3] WASSERBAUER, Charles A. und GLASSMAN, Arthur J., 1975. Fortran program for predicting off-design performance of radial-inflow turbines. In: NASA Technical Reports Server [online]. 09.1975 [Zugriff am: 16.08.2018]. Verfügbar unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750024045.pdf
- [4] CFturbo GmbH, 2017. Turbomaschinen-Entwurf mit CFturbo
 GmbH. Internes Dokument.
- [5] AUNGIER, Ronald H., 2000. Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis. New York: ASME Press, S. 74-75. ISBN 0-7918-0093-8
- [6] WIESNER, F.J., 1967. A Review of Slip Factors for Centrifugal Impellers. In: Journal of Engineering for Power. 89(4), S. 558-566.
- [7] AUNGIER, Ronald H., 2000. Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis. New York: ASME Press, S. 83. ISBN 0-7918-0093-8
- [8] NIKURADSE, J., 1950. Laws of Flow in Rough Pipes. In: NACA Technical Memorandum. NACA TM-1292. (NIKURADSE, J., 1933. Strömungsgesetze in rauhen Rohren. In: VDI-Forschungsheft 4(1933))

Literaturverzeichnis

- [9] RENEAU, L. R., JOHNSON, J. P. und KLINE, S. J., 1967. Performance and Design of Straight, Two-Dimensional Diffusers. In: Journal of Basic Engineering. 89(1), S. 141-150.
- [10] BELL, Ian H., WRONSKI, Jorrit, QUOILIN, Sylvain und LEMORT, Vincent., 2014. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. In: Industrial & Engineering Chemistry Research. 53(6), S. 2498-2508. Verfügbar unter: DOI: 10.1021/ie4033999
- [11] AUNGIER, Ronald H., 2006. Turbine Aerodynamics. New York: ASME Press, S. 201-203. ISBN 0-7918-0241-8
- [12] LIEBLEIN, Seymour und ROUDEBUSH, William H., 1956. Theoretical Loss Relations for Low-Speed Two-dimension-Cascade Flow. In: NASA Technical Reports Server [online]. 03.1956 [Zugriff am: 16.08.2018]. Verfügbar unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084888.pdf
- [13] AUNGIER, Ronald H., 2006. Turbine Aerodynamics. New York: ASME Press, S. 223-224. ISBN 0-7918-0241-8
- [14] AUNGIER, Ronald H., 2006. Turbine Aerodynamics. New York: ASME Press, S. 224-227. ISBN 0-7918-0241-8
- [15] BEN-KIKI, Oren, 2019. YAML Ain't Markup Language (YAML[™]) Version 1.2, 2019
 [Zugriff am 28.01.2019]. Verfügbar unter: https://yaml.org/spec/1.2/spec.pdf
- [16] SAURET, Emilie, 2012. Open Design of High Pressure Ratio Radial-inflow Turbine for Academic Validation. In: ASME 2012 International Mechanical Engineering Congress & Exposition. Houston(USA), 9-15. November 2012. New York: ASME Press.
- [17] JONES, A.C., 1996. Design and Test of a Small, High Pressure Ratio Radial Turbine. In: Journal of Turbomachinery. 118(2), S. 362-370.
- [18] KOFSKEY, Milton G. und HOLESKI, Donald E., 1966. Cold Performance Evaluation of a 6.02-inch Radial Inflow Turbine Designed for a 10-kilowatt Shaft Output Brayton Cycle Space Power Generation System. In: NASA Technical Re-

Literaturverzeichnis

ports Server [online]. 02.1966 [Zugriff am: 16.08.2018]. Verfügbar unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700001442.pdf

[19] FUTRAL, Samuel M. und HOLESKI, Donald E., 1967. Experimental Performance Evaluation of a 6.02-inch (15.29-cm) Radial-Inflow Turbine With An Exit Diffuser. In: NASA Technical Reports Server [online]. 12.1967 [Zugriff am: 16.08.2018]. Verfügbar unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670008297.pdf