Kennfeldabschätzung für Radialturbinen Kolloquium

Chaobai Li

Fakulität Maschinenwesen, TU Dresden

15.03.2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ziel der Arbeit

(ロ) (同) (三) (三) (三) (○) (○)

Kennfeldabschätzung für Radialturbinen

- mit der Methode von Aungier
- Umsetzung ins Computerprogramm
- Testen mit der Erstellung von Kennfeldern aus bekannten Beispielen
- Bewertung dieser Methode
 - Einsatzgrenzen
 - Robustheit und Parametersensitivität
 - Genauigkeiten

Aufbau einer Radialturbine dieser Arbeit

Die Methode von Aungier

(ロ) (同) (三) (三) (三) (○) (○)

- eindimensionale Analyse auf der Mittellinie
- adiabat, verlustbehaftete Strömung
- erfordert Kenntnisse über Halspassage in Leitgitter und Impeller
 - Behandlung von Überschallströmung ermöglicht
- iterative Lösung in 2 Ebenen:
 - f
 ür jede Komponenten (Massenstrombilanz)
 - evtl. für die ganze Turbine (Randbedingungen)

Die Methode von Aungier: 4 Ebene

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Die Methode von Aungier: Eingabe

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Mögliche Eingaben
 - Arbeitsfluid: z.B. Luft
 - am Eintritt: p^{*}_E, T^{*}_E (*: Totalgröße), mⁱ_E
 - am Austritt: p_A
 - Drehzahl: N
- Performance-Analyse mit 3 Typen von Randbedingungen
 - Auswahl nach Bedarf:
 - z.B. die Bedingungen von Experimenten entsprechend
 - nicht alle Eingaben werden eingehalten!
 - Berechnung an einem vorgegebenen Betriebspunkt
 - aus mehrere Betriebspunkten -> Kennfelder

Die Methode von Aungier: Randbedingungen

ohne

- Austrittsbedingung p_A vernachlässigt
- einfache Berechnung vom Eintritt nach Austritt
- gilt nicht in Überschallbereich
- 2 m_E ist anzustreben
 - in Unterschallbereich wie (1)
 - in Überschallbereich:
 - *m*_E schrittweise reduziert
 - erbringt den maximalen Massenstrom in Unterschallbereich

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

3 *p*_A ist anzustreben...

Die Methode von Aungier: Randbedingungen

3 p_A am Austritt wird berücksichtigt

- viele Iterationen...
- in Unterschallbereich:
 - durch Veränderung an Massenstrom \dot{m}_E
 - Newton-Verfahren zur Suche
- in Überschallbereich:
 - \dot{m}_E begrenzt
 - erfordert zusätzliche Lösung von Gegendrücken verstopfter Komponenten

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Vorherige Randbedingung bildet Grundlagen f
ür die Sp
ätere:

Analyse an einem Betriebspunkt

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- chronologische Analyse von allen Komponenten:
 - Sprialgehäuse, Leitgitter, Impeller, Diffusor
- für jede Komponente:
 - Querschnitt 1 und 3: Eintritt & Austritt
 - evtl. geometrischer mittleren Querschnitt 2, z.B. $r_2 = 0.5(r_1 + r_3)$

Analyse von einer Komponente

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Ziel: Bestimmung von
 - thermodynamische Zustandsgröße am Austritt: h₃,s₃, p₃, ρ₃...
 - Geschwindigkeitskomponente:
 - *c*_{3m}, *c*_{3θ} -> *c*₃ und *α*₃ (stationär)
 - w_{3m} , $w_{3\theta}$ -> w_3 und $\alpha_{3,rel}$ (rotierend), danach: c_3 , $c_{3\theta}$, ...
- wobei
 - Massenstromerhaltung
 - Enthalpie- oder Rothalpieerhaltung
 - Ergebnisse von Verlustberechnungen

gleichzeitig erfüllt werden

Analyse von einer beschaufelten Komponente

Massenstromerhaltung zwischen Ein- und Austritt:

 $\dot{m} = 2\pi r_1 b_1 \rho_1 c_1 \sin \alpha_1 = 2\pi r_3 b_3 \rho_3 c_3 \sin \alpha_3$

• Enthalpie- oder Rothalpieerhaltung:

$$h_1^* = h_3^*$$
 (stationär)
 $h_{1,\mathrm{rel}}^* - h_{3,\mathrm{rel}}^* = rac{u_1^2 - u_3^2}{2}$ (rotierend)

- Geschwindigkeit *c* oder *w* aus (absolute oder relative) Totalenthalpie?
 - Abströmwinkel α₃ oder α_{3,rel} aus Geometrie & als inkompressible Strömung abgeschätzt!
 - iterative Lösung von o.g. 2 Erhaltungen möglich?
 - noch thermodynamische Beziehung unbekannt: $s_1 \neq s_3$

Verluste in einer Komponente

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Verluste an Totaldrücke innerhalb einer Komponente
 - gesamter Verlustfaktor

$$Y = rac{p_1^* - p_3^*}{p_3^* - p_3} \ \Rightarrow \ p_3^* = rac{p_1^* + Y p_3}{1 + Y}$$

Annährung mit inkompressiblem Fluid:

$$p^* = p + rac{1}{2}
ho c^2$$

 immer auf p₃^{*} - p₃ (dynamischen Druck am Austritt) bezogen

•
$$Y = Y_{\theta} + Y_{\rho} + Y_{\text{inc}} + Y_{\text{HS}} + Y_{\text{CL}}$$

- $Y = Y_{\theta} + Y_{p} + Y_{\text{inc}} + Y_{BL} + Y_{\text{HS}} + Y_{\text{CL}}$
- Y_θ: Verlust der Drallströmung im Spiralgehäuse

$$Y_{\theta} = \frac{1}{c_3^2} (\frac{c_1 r_1}{r_3} - \frac{c_2 r_2}{r_3})^2$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

•
$$Y = Y_{\theta} + Y_{\rho} + Y_{\text{inc}} + Y_{BL} + Y_{\text{HS}} + Y_{\text{CL}}$$

• *Y_p*: Verlust in Grenzschichten

$$Y_{
ho}=rac{2\Theta+\Delta^2}{(1-\Delta)^2}$$

- Δ : Summe von anteiligen Verdrängungsdicken, $= \sum \delta_i^* / b_i$
- Θ : Summe von anteiligen Implusverlustdicken, $= \sum \delta_i / b_i$
- Grenzschichtberechnung ergibt neben Y_p auch die Verdrängungsdicke Δ
 - Strömungsquerschnitt muss mit Multiplikation von (1 Δ) korrigiert werden.

•
$$Y = Y_{\theta} + Y_{\rho} + Y_{\text{inc}} + Y_{BL} + Y_{\text{HS}} + Y_{\text{CL}}$$

• Y_{inc}: Inzidenzverlust

$$Y_{\rm inc} = rac{\sin^2(lpha_1 - lpha_1^*)(m{p}_1^* - m{p}_1)}{m{p}_3^* - m{p}_3}$$

- *α*^{*}₁: optimaler Inzidenzwinkel
 - für Leitgitter: eine Funktion von Geometrie
 - für Impeller: von Geometrie, Drehzahl und Massenstrom abhängig

•
$$Y = Y_{\theta} + Y_{\rho} + Y_{\text{inc}} + Y_{BL} + Y_{\text{HS}} + Y_{\text{CL}}$$

- Y_{BL} : Verlust wegen Schaufelbelastungen $Y_{BL} = \frac{1}{24} (\frac{2\Delta w_2}{w_2})^2$
 - Y_{HS}: Verlust ungleichmäßiger w-Verteilung von Nabe nach Gehäuse

$$Y_{HS} = \frac{1}{6} \left(\frac{\kappa_m b_2 w_2}{w_3 \sin \alpha_3}\right)^2$$

- findet im Impeller statt
- Einfluss von Δw₂ ist auch in Grenzschichtberechnungen zu berücksichtigen!

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

•
$$Y = Y_{\theta} + Y_{\rho} + Y_{\text{inc}} + Y_{BL} + Y_{\text{HS}} + Y_{\text{CL}}$$

• Y_{CL}: Spaltverlust an der Schaufelspitze

$$Y_{\mathrm{CL}} = rac{\dot{m}_{\mathrm{CL}}\Delta p}{\dot{m}(p^*_{3,\mathrm{rel}}-p_3)}$$

- Δp: Druckdifferenz zwischen Druck- und Saugseite an der Schaufelspitze
 - abgeschätzt aus Änderung vom Drehimplus in Strömung
- $\dot{m}_{\rm CL}$: Leckage-Massenstrom an dieser Stelle

• Geschwindigkeit aus
$$\Delta p$$
: $u_{\rm CL} = \sqrt{2\Delta p/\bar{\rho}}$

Massenstrombilanz

- Verlustfaktor *Y*: verlustbehaftete Natur der Analyse von Aungier
- Austrittszustände einer Komponente wird iterativ bestimmt, so dass
 - aus Geschwindigkeit und Dichte:

$$\dot{m}_{3} = \dot{m}_{1}$$

$$C_{3m}/C_{3\theta} = \tan \alpha_3$$

- $p_3^*=rac{p_1^*+Yp_3}{1+Y}$
- *h*^{*}₃ (oder *h*^{*}_{3,rel}) und *h*^{*}₁ (oder *h*^{*}_{1,rel}) die energetische Beziehung entsprechen

Massenstrombilanz

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Massenstrombilanz

- 1 Ausgangspunkt: $s_{3(1)} = s_1$
- 2 Abschätzung an Austrittszustände
 - **1** Dichte aus Eintrittszustand $\rho_{3(1)} = \rho_1$
 - 2 Austrittsgeschwindigkeiten abgeschätzt
 - thermodynamische Größe am Austritt bekannt
 - hier: energetische Beziehung
 - Dichte aus Thermodynamik muss nicht mit ρ₃₍₁₎ übereinstimmen!
- **3** Korrektur an $p_3^* = p_{3(1)}^*$
 - 1 Ein- und Austrittszustände: Abschätzung von Y
 - 2 p_3^* gewichtet aus p_1^* und p_3
 - **3** neue Entropie: $s_{3(2)} > s_{3(1)}$
 - 4 neue Dichte(!): $\rho_{3(2)}$
- Wiederholung, bis abgeschätzten Massenstrom m₃ mit m₁ konvergiert.

Abbruch in Massenstrombilanz: Überschallbetrieb

- Ist die Strömung in der Komponente supersonisch: keine Konvergenz!
- · Feststellung: während Iterationen immer auf

$$rac{\mathrm{d}(
ho c)}{\mathrm{d} c} < 0$$

prüfen.

- Bei Feststellung von möglichen Überschallbetrieb:
 - Austrittsgeschwindigkeit $c_3 = a_3$ festgesetzt.
 - Massenstrombilanz endet an der Druckwelle (Halspassage)
 - Ermittlung von Austrittszuständen erfordert zusätzliche Eingabe über Gegendruck
 - Ohne diese Eingabe:
 - Bereich vom Gegendruck ermittelt
 - Fehlermeldung nach Außen, Abbruch der Berechnung

Randbedingungen

(ロ) (同) (三) (三) (三) (○) (○)

- Berechnung vom Eintritt nach Austritt: Probleme
 - am Eintritt: p_E^* , T_E^* und \dot{m}_E ständig vorzugeben
 - aber:
 - *m*_E immer praktisch?
 - Austrittsdruck p_A berücksichtigt?
 - Überschallbetrieb: m_E begrenzt, zusätzliche Behandlung nötig!
- Randbedingungen
 - 1 keine Voraussetzung am Austritt: einfache Berechnung
 - m_E vorgegeben: prüft, ob m_E praktisch ist.
 - JA: endet wie (1)
 - NEIN: Überschallbetrieb, wie ist der Maximalwert (Stopfgrenze) von *m*_E?

3 *p*_A vorgegeben:

• wie ist \dot{m}_E und ggf. die Gegendrücke aller verstopftenen Komponenten, die den Austrittsdruck p_A bilden?

Randbedingung II: orientieren nach \dot{m}

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Randbedingung III: orientieren nach p_A

Randbedingung III: orientieren nach pA

(ロ) (同) (三) (三) (三) (○) (○)

- 1. Punkt: $\dot{m} = 0, \, p_A = p_E^*$
- 2. Punkt: m aus Geometrie konservativ abgeschätzt
 - Stelle: Austritt vom Leitgitter
 - mit c₃ = 0.5a₃
- weitere Punkte durch Newton-Verfahren

 $f(\dot{m}) \rightarrow p_A$

- Vorgabe von m in Randbedingung II
 - auf Überschallbetrieb beachtet!

Behandlungen im Überschallbereich

- Problem: ≥ 1 Komponente(n) verstopft
 - Weitere Erhöhung von m unmöglich!
 - zusätzliche Behandlung von Gegendrücken verstopftener Komponenten!
- Suchbereich vom Gegendruck p₃
 - $p_{3,\max}$: Druck am Halspassage
 - *p*_{3,min}: wenn Austrittsquerschnitt verstopft
- Systematische Verringerung vom Suchbereich

$$p_A = f(p_3) \rightarrow p_{A,Vorgabe}$$
 $p_3 \in [p_{3,min}, p_{3,max}]$

- Berechnung an einem Betriebspunkt erneut gestartet
 - mit *p*₃ wird die Berechnung bis zum Austritt fortgefahren
 - solange keine nachfolgende Komponente verstopft ist!
- Beendigung: $|p_{3,\max}/p_{3,\min}-1|<\varepsilon$

Technische Umsetzung: RTKF

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ein Program in Python
- Realstoffdaten: CoolProp
- Ergebnisbericht als Webseite

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- SAURET, Emilie, 2012. Open Design of High Pressure Ratio Radial-inflow Turbine for Academic Validation. In: ASME 2012 International Mechanical Engineering Congress & Exposition. Houston(USA), 9-15. November 2012. New York: ASME Press.
 - JONES, A.C., 1996. Design and Test of a Small, High Pressure Ratio Radial Turbine. In: Journal of Turbomachinery. 118(2), S. 362-370.
- Analysen:
 - Leitgitter im Überschallbetrieb
 - CFD-Rechnungen für η_{T-S}

Testfall: Analysen von Sauret

(ロ) (同) (三) (三) (三) (○) (○)

- Feststellungen mit der Methode von Aungier
 - Grenzschichtberechnung im Impeller f
 ührt zu numerischer Instabilit
 ät
 - muss deaktiviert werden
 - Wirkungsgrad 2% höher als CFD-Rechnungen
 - richtige Erkennung von Überschallbetrieb im Leitgitter, gute Abschätzung an Mach-Zahl

Testfall: Analysen von Sauret

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Testfall: Analysen von Sauret

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- CFD-Ergebnis nach Sauret
- Methode von Aungier: $c_3 = 463.2 \text{ m/s}$, $a_3 = 386.6 \text{ m/s}$
 - relative Ma = 1.2

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Systematische Untersuchung von Radialturbinen an NASA in 1960er Jahren
- Experimenten mit verschiedenen Größen
- auch als Testfall im Buch von Aungier beschrieben
- Mangel an Daten meridionaler Abmessungen
 - mit CAD-Software aus Skizzen gemessen
 - in CFTurbo n\u00e4hrungsweise rekonstruiert

Testfall: NASA 6,02"-Turbine

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Testfall: NASA 6,02"-Turbine

(ロ) (同) (三) (三) (三) (○) (○)

- NASA Experimenten:
 - konstante Eintrittszustände
 - Austrittsdruck nach Bedarf geregelt, Massenstrom gemessen
- daher:
 - einfache Berechnung reicht
 - oder Randbedingung II mit Massenstrom-Vorgabe
- Genaue Abmessungen in Eingaben sehr wichtig.
 - (S. 75 der Diplomarbeit)
- Stopfgrenze und Pumpgrenze können ermittelt werden.
 - (S. 76)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Besonderheiten:
 - Details über jeden Komponenten
 - Berechnung in Überschallbereich
 - Stopf- und Pumpgrenze
- Schwierigkeiten:
 - Genaue Abmessungen: wichtig
 - erfordert Kenntnisse über Halspassage
 - Grenzschichtberechnung, insbesonders in Off-Design Punkten
- Dauer der Berechnungen:
 - pro Betriebspunkt: je nach Randbedingung, einige Sekunden.
 - pro Kennfeld: einige Minuten.

Ausblick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

modularer Aufbau des Programms

- abweichende Kombination von Komponenten
 - mehrerer Stufe
 - unbeschaufelter Stator